Answer:
0.2M NaOh
Explanation:
there are 0.2 mol of NaOH in 8.0 g. (8.0/40) =0.2. Molarity = mol/L = 0.2M.
Answer:
Solution A that will form a precipitate with Ksp = 2.3 x 10−4
Explanation:
Li₃PO₄ ⇄ 3 Li⁺(aq) + PO₄³⁻(aq)
3S S
Where S = Solubility(mole/lit) and Ksp = Solubility product
⇒ Ksp = (3S)³ x (S)
⇒ 27S⁴ = 2.3x10−4
⇒ S = 0.05 mol/lit
Concentration of Li₃PO₄ precipitate = 0.05
<u>Solution A </u>
0.500 lit of a 0.3 molar LiNO₃ contains 0.5 x 0.3 = 0.15 mole
0.4 lit of a 0.2 molar Na₃PO₄ contains = 3 x 0.4 x 0.2 = 0.24 mole
3 LiNO₃ + Na₃PO₄ → 3 NaNO₃ + Li₃PO₄
(Mole/Stoichiometry)

= 0.05 = 0.24
Since from (Mole/Stoichiometry) ratio we can conclude that LiNO₃ is limiting reagent.
So concentration of Li₃PO₄ is equal to 0.05.
The reaction between concentrated acid and water can release a lot of heat. If a little water is added to a larger amount of acid, the heat can cause the small amount of water to boil very rapidly which then spatters some acid. ... It is recommended that acid should be added to water and not water to acid.
All molecular motion stop at 0 k wich is zero kelvin. At absolute 0 it stops. The temperature of 0 entropy at which all molecular motion stops equals in centigrades to -273.15° C which is the same as 0 in kelvin degrees. Have in mind that t<span>emperature is a measure of the average kinetic energy of the </span>molecules<span> in a material.</span>