Answer: 100cm
Explanation:
The force of friction on a surface normal to gravity where µ is the coefficient of friction is
F = µmg
Where
F = the friction force
µ = coefficient of friction
m = mass of the object
g = acceleration due to gravity
Also, the Kinetic Energy of the object, E = Fs, where
E = Kinetic Energy
s = stopping distance. So that,
E = µmgs
40 J = 0.4 * 10 kg * 10 m/s² * s
40 J = 40 kgm/s² * s
s = 40 J / 40 kgm/s²
s = 1 m or 100 cm
The action or process of magnifying something or being magnified, especially visually. Hope this helped
Answer:
A. 16.9 m
Explanation:
I think this is the answer i am not sure
but hope it helps
Answer:
reliability
accuracy
Explanation:
If a reading of a measurement is consistently the same then the measurement is reliable.
If a reading of measurement is close the actual value of the measurement then the reading is accurate.
Here, a stationary tree shows reading 6 mph once and 0 mph another instant. So, neither the reading of a measurement is consistent not the reading of measurement is close the actual value.
Hence, the radar has problems in its reliability and accuracy
Here in this case we can use work energy theorem
As per work energy theorem
Work done by all forces = Change in kinetic Energy of the object
Total kinetic energy of the solid sphere is ZERO initially as it is given at rest.
Final total kinetic energy is sum of rotational kinetic energy and translational kinetic energy
also we know that
Now kinetic energy is given by
Now by work energy theorem
Work done = 10500 - 0 = 10500 J
So in the above case work done on sphere is 10500 J