Answer:
F=1.4384×10⁻¹⁹N
Explanation:
Given Data
Charge q= -8.00×10⁻¹⁷C
Distance r=2.00 cm=0.02 m
To find
Electrostatic force
Solution
The electrostatic force between between them can be calculated from Coulombs law as

Substitute the given values we get

Explanation:
Commercially available batteries use a variety of metals and electrolytes. Anodes can be made of zinc, aluminum, lithium, cadmium, iron, metallic lead, lanthanide, or graphite. Cathodes can be made of manganese dioxide, mercuric oxide, nickel oxyhydroxide, lead dioxide or lithium oxide. Potassium hydroxide is the electrolyte used in most battery types, but some batteries use ammonium or zinc chloride, thionyl chloride, sulfuric acid or lithiated metal oxides. The exact combination varies by battery type. For example, common single-use alkaline batteries use a zinc anode, a manganese dioxide cathode, and potassium hydroxide as the electrolyt
Answer:
this is a no brainer
Explanation:
As air pressure in an area increases, the density of the gas particles in that area increases.
Solution :
Given data :
Mass of the merry-go-round, m= 1640 kg
Radius of the merry-go-round, r = 7.50 m
Angular speed,
rev/sec
rad/sec
= 5.89 rad/sec
Therefore, force required,

= 427126.9 N
Thus, the net work done for the acceleration is given by :
W = F x r
= 427126.9 x 7.5
= 3,203,451.75 J