The two pairs of polar coordinates for the given point (3, -3) with 0° ≤ θ < 360° are (3√2, 135°) and (3√2, 315°).
<h3>What is a polar coordinate?</h3>
A polar coordinate is a two-dimensional coordinate system, wherein each point on a plane is typically determined by a distance (r) from the pole (origin) and an angle (θ) from a reference direction (polar axis).
Next, we would determine the distance (r) and angle (θ) as follows:
r = √(3² + (-3)²)
r = √(9 + 9)
r = 3√2.
θ = tan⁻¹(-3/3)
θ = tan⁻¹(-1)
θ = 3π and 7π/4 (second and fourth quadrants).
Converting to degrees, we have:
θ = 135° and 315°.
Read more on polar coordinates here: brainly.com/question/3875211
#SPJ1
Complete Question:
Determine two pairs of polar coordinates for the point (3, -3) with 0° ≤ θ < 360°
You can identify the lines and their colour either by
1. the y-intercepts.
First equation has a y-intercept of 3 and second has a y-intercept of 2.
So first equation is blue, and second is red.
2. the slopes
First equation has a negative slope (so blue), and second has a positive slope (so red).
Now work on each of the equations.
1. first equation (blue)
If we put x=0, we end up with the equation y≤3, the ≤ sign indicates that the region is BELOW the BLUE line.
2. second equation (red).
If we put x=0, we end up with the equation y>2, the > sign indicates that the region is ABOVE the RED line AND the red line should be dotted (full line if ≥).
So at the point, it won't be too hard to find the correct region.
To confirm, take a point definitely in the region, such as (-6,0) and substitute in each equation to make sure that both conditions are satisfied.
The level of precision is given by the number of decimal places.
1.45 has a precision of 2 ( two decimal digits)
.0034 has a precision of 4 ( 4 decimal digits)
Numbers that end in zeros have negative precision:
100: has a precision of -2 ( 2 zeros)
15 : Whole numbers has precision 0.
From most precise to least precise:
.0034 - 1.45- 15 - 100
Answer:
It is the right-angled triangle.
Step-by-step explanation:
According to the Pythagorean theorem,
, which c is the longest side of the triangle.
So,
if the triangle is right angle.



∵LHS=RHS
∴It is a right-angled triangle.