Answer:
t = 1.42 s and d = 35.5 m
Explanation:
Given that,
Velocity of a roadrunner is 25 m/s
A certain coyote wants to capture the roadrunner using a net dropped from an overpass that is 10 m high.
We need to find the time before the roadrunner is under the overpass and how far away from the overpass is the roadrunner when the coyote drops the net.

Let d is the distance traveled. So,
d = vt
d = 25 m/s × 1.42 s
d = 35.5 m
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N
Answer:
R2 = 300 Ohms
Explanation:
Let the two resistors be R1 and R2 respectively.
RT is the total equivalent resistance.
Given the following data;
R1 = 100 Ohms
RT = 75 Ohms
To find R2;
Mathematically, the total equivalent resistance of resistors connected in parallel is given by the formula;

Substituting into the formula, we have;

Cross-multiplying, we have;
75 * (100 + R2) = 100R2
7500 + 75R2 = 100R2
7500 = 100R2 - 75R2
7500 = 25R2
R2 = 7500/25
R2 = 300 Ohms
The concept required to solve this problem is the optical relationship that exists between the apparent depth and actual or actual depth. This is mathematically expressed under the equations.

Where,
Depth of glass
Refraction index of water
Refraction index of glass
Refraction index of air
Depth of water
I enclose a diagram for a better understanding of the problem, in this way we can determine that the apparent depth in the water of the logo would be subject to



Therefore the distance below the upper surface of the water that appears to be the logo is 4.041cm