1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldfiish [28.3K]
3 years ago
12

Using the points B (4, -8) and C (-2,4) find the midpoint and distance

Mathematics
1 answer:
Elenna [48]3 years ago
5 0

Answer:

<h2> Mid point : </h2><h2 /><h2>( \frac{x_{1} +x_{2}}{2} ) , ( \frac{y_{1} +y_{2}}{2} )\\(\frac{4-2}{2}), (\frac{-8+4}{2})\\  (1,-2)</h2><h2>Distance</h2><h2>\sqrt{(x_{2}  -x_{1} )^{2}} +  \sqrt{(y_{2}  -y_{1} )^{2}}\\\sqrt{(-2  -4 )^{2}} +  \sqrt{(4  -(-8) )^{2}}\\\\\sqrt{36}+\sqrt{144}\\\\ 6+12\\ 18</h2>
You might be interested in
Evaluate the triple integrals below where E is the solid tetrahedron with vertices (0,0,0), (1,0,0), (0,2,0) and (0,0,3). I need
Korvikt [17]
Hi, We can to calculate the vectors.

And the determinant will be the plan Z

Let  A = (0,03), B =(0,2,0) , C = (1,0,0) and D = (0,0,0)

Then,

AB = B - A

Replacing the points:

AB = (0,2,0) - (0,0,3)

AB = (0i, 2j , -3k)
----------------------------

Already the vector AC = C -A

That's is,

AC = (1,0,0) - (0,0,3)

AC = (1i, 0j, -3k)

Then,

The plan = \left[\begin{array}{ccc}x&y&z\\0&2&-3\\1&0&-3\end{array}\right]

Solving it, we will have:

Plan:  -6x -3y -2z + d = 0

Replacinng any point to find the value of d

Example the point A =(0,0,3)

-6(0) -3(0) -2(3) + d = 0

-6+d = 0

d = 6

Then, The us equation will stay of form following :

-6x -3y -2z +6 = 0

or

6x + 3y +2z -6 = 0

Isolating 2z:

2z = 6 -6x - 3y

Dividing both the sides od equation by 2

z = 3 - 3x - 3y/2

Then,

0  \leq  Z  \leq  3-3x- \frac{3y}{2}

Now, Let's find the <span>domain in xy
</span>
|y
|  (0,2)
|\
|  \
|    \
|       \  (1,0)    
------------------------- x


b = Cut in y

then b will be = 2

As y = ax + b

y = ax + 2

We have the point = (1,0)

Replace in the equation

0 = a(1) + 2

0 = a + 2

Isolate a

a = -2

Then us stay:

y = -2x + 2


0  \leq  y  \leq  -2x+2

-------------------------------------

With  ,


0  \leq  x  \leq  1

----------------------------------------


\\ \int\limits^1_0 {} \,  \int\limits^ \frac{-2x+2}{} _0 {} \,  \int\limits^ \frac{3-3x- \frac{3y}{2} }{} _0 {(xy)} \, dzdydx&#10; \\ &#10; \\ =\int\limits^1_0 {} \,  \int\limits^ \frac{-2x+2}{} _0 {} \,(3xy -3x^2y - \frac{3xy^2}{2} )dydx&#10; \\ &#10; \\ =\int\limits^1_0 {} \, ( \frac{3xy^2}{2} - \frac{3x^2y^2}{2} - \frac{3xy^3}{6} )|0,(-2x+2)dx&#10; \\ &#10; \\ =  \int\limits^1_0 {(\frac{3x(-2x+2)^2}{2} - \frac{3x^2(-2x+2)^2}{2} - \frac{3x(-2x+2)^3}{6} )} \, dx &#10;

Now putting 3x/2(-2x+2)²  as commu factor

\\ =  \int\limits^1_0 {(\frac{3x(-2x+2)^2}{2} - \frac{3x^2(-2x+2)^2}{2} - \frac{3x(-2x+2)^3}{6} )} \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[ 1- x- \frac{1}{3} (-2x+2)] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[ 1- x+ \frac{2x}{3} - \frac{2}{3} ] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2[  \frac{1}{3}  - \frac{x}{3}] } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 { \frac{3x}{2}(-2x+2)^2( \frac{1-x}{3} ) } \, dx &#10;&#10;

\\  =  \int\limits^1_0 { \frac{x}{2}(-2x+2)^2(1-x) } \, dx &#10; \\ &#10; \\ =   \int\limits^1_0 { \frac{x}{2}(4x^2-8x+4)(1-x) } \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 {(2x^3-4x^2+2x) (1-x) } \, dx &#10; \\ &#10; \\ = \int\limits^1_0 {(-2x^4+4x^3-2x^2+2x^3-4x^2+2x)} \, dx &#10; \\ &#10; \\ =  \int\limits^1_0 {(-2x^4+6x^3-6x^2+2x)} \, dx &#10; \\ &#10; \\ =  -\frac{2x^5}{5} + \frac{6x^4}{4} - \frac{6x^3}{3} + \frac{2x^2}{2} |(0,1)&#10; \\ &#10; \\ =  -\frac{2}{5} + \frac{6}{4} - \frac{6}{3} + \frac{2}{2}&#10;

\\ =-\frac{2}{5} + \frac{3}{2} - 2 + \frac{2}{2}&#10; \\ &#10; \\ = -\frac{2}{5} -2+ \frac{3+2}{2} &#10; \\ &#10; \\ = -\frac{2}{5} -2 + 5/2 \\ &#10; \\ =  \frac{1}{10} u.v
5 0
3 years ago
What expresion is equal to
ivann1987 [24]

Answer:

The second option and the last option

Step-by-step explanation:

10^5 equals 100000 and if you try all options the only 2 that also equal 100000 is those two.

4 0
3 years ago
Read 2 more answers
35. Para pintar una casa se mezclaron 5/4 L do pintura blanca y 1/2 L de pintura azul. Al final solo se emplearon 213 L de la me
maw [93]

Answer:

Total paint left over = \frac{13}{12}L

Step-by-step explanation:

Given - To paint a house, 5/4 L of white paint and 1/2 L of blue paint

             were mixed. In the end only 2/3 L of the mixture were used.

To find - How many liters of paint were left over ?

Proof -

Given that,

5/4 L of white paint and 1/2 L of blue paint were mixed.

So, total mixture = (\frac{5}{4} + \frac{1}{2})L

                          = \frac{5 + 2}{4}L

                          = \frac{7}{4}L

⇒Total mixture =  \frac{7}{4}L

Now,

Given that ,

In the end only 2/3 L of the mixture were used.

So, total mixture left = (\frac{7}{4} - \frac{2}{3})L

                                = \frac{21 - 8}{12}L

                                = \frac{13}{12}L

∴ we get

Total paint left over = \frac{13}{12}L

6 0
2 years ago
If an 8 inch dimension is reduced to 2.5 inches, what is the percentage of reduction?
Savatey [412]
68.75 percent reduction
8 0
2 years ago
SOLVE. <br>1/5x=-10<br><img src="https://tex.z-dn.net/?f=1%20%5Cdiv%205x%20%3D%20%20-%2010" id="TexFormula1" title="1 \div 5x =
Sladkaya [172]

Answer: X = -50

Step-by-step explanation:

1. 1/5x = -10

1/5x = -10

2.Multiply by 1

3.Multiply all terms by the same value to eliminate fraction denominators.

4.Simplfiy

7 0
2 years ago
Other questions:
  • Select all that apply.
    9·2 answers
  • What number is divisible by five 970 729 86 or 52
    6·1 answer
  • Which statement answers this question: Casey sells half of his video games. The next day he buys 3 more. He now has 27. How many
    11·1 answer
  • PLEASE HELP FAST!! WOULD BE VERY APPRECIATED!
    14·1 answer
  • STATE THE DOMAIN OF EACH OF THE FOLLOWING RELATIONS.
    15·1 answer
  • Mrs. Hernandez saves 4% of her earnings for retirement. This year, she earned $200 more than last year, and she saved $900. Comp
    14·1 answer
  • Problem: Construct a triangle with interior angle measures of 45° and 45°.
    5·1 answer
  • Harish's soccer team is trying to raise $5,092 to travel to a tournament in Florida, so they decided to host a pancake breakfast
    8·1 answer
  • Translate this sentence into an equation 20 less than Jenny's score is 66?
    9·1 answer
  • Steve sells vacuum cleaners door to door. He earns a base salary of $500 plus $100 for every vacuum cleaner he sells. Steve also
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!