Answer:
.46 moles H2O2
3,014 grams Au
Explanation:
H2O2:
15.78g (1 mol/34g) = .46 moles H2O2
Au:
15.3mol (197g/mol) = 3,014 grams Au
Answer:

Explanation:
The relation between Kp and Kc is given below:
Where,
Kp is the pressure equilibrium constant
Kc is the molar equilibrium constant
R is gas constant
T is the temperature in Kelvins
Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants)
For the first equilibrium reaction:
Given: Kc = 0.50
Temperature = ![400^oC=[400+273]K=673K](https://tex.z-dn.net/?f=400%5EoC%3D%5B400%2B273%5DK%3D673K)
R = 0.082057 L atm.mol⁻¹K⁻¹
Δn = (2)-(3+1) = -2
Thus, Kp is:

7=cells
9= The Central Nervous system
10= not sure
True when the boron control rods are lowered it slows the reaction
A second order reaction varies with the square of the concentration of the reactant. Therefore, halving the concentration will reduce the rate of reaction by a factor of 4.
The answer is E.