Answer:
Explanation:
Let the extension in the spring be x .
restoring force = weight of block
kx = mg
x = 
= 23.84 cm
b )
When the elevator is going upwards
Restoring force = mg + ma
k x₁ = 10.9 ( 9.8 + 1.89 )
x₁ = 28.44 cm
( y coordinate will be - ( 28.44 - 23.84 ) = - 4.6 cm )
c ) When the cable snaps , both elevator and block undergo free fall . In this case apparent g = 0
Since the spring is stretched by 28.44 cm , a restoring force continues to act on the block which is equal to
.2844 x 448
= 127.41 N
So a net acceleration a will act on the block
a = 127.41 / 10.9
= 11.68 m / s²
The block will undergo SHM with amplitude equal to 28.44 cm .
The statement "<span>The motion of a pendulum for which the maximum displacement from equilibrium does not change is an example of simple harmonic motion." is true.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
To solve this problem we will use a free body diagram that allows us to determine the Normal Force.
In general, the normal force would be equivalent to

Since the skier is standing on two skis, his weight will be divide by two

Pressure is given as the force applied in a given area, that is

Replacing F with N'


Our values are given as,




Replacing we have that


Therefore the pressure exerted by each ski on the snow is 776.01Pa