It doesn't matter where you are. "Tides" happen twice (hi - lo - hi - lo) in about 24 hours and 50 minutes. Anywhere.
If it doesn't do two complete cycles in 24 hours 50 minutes, then it's not tide.
<span>If two wheels are exactly the same but spin at different speeds, wheel b is twice te speed of wheel a, it is possible to find the ratio of the magnitude of radial acceleration at a singular point of the rim on wheel be to the spot is four.</span>
The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is
<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J
That is,
• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point
• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium
so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.
By the work-energy theorem,
<em>W</em> = ∆<em>K</em> = <em>K</em>
where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So
<em>W</em> = 1/2 <em>mv</em> ²
where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get
<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s
Answer:
The hottest temperature is 
Explanation:
From the question we are given



Generally converting
to Fahrenheit

=> 
=> 
Converting
to Fahrenheit

=> 
=>
Now comparing the temperature in Fahrenheit we see that
is the hottest