1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allushta [10]
3 years ago
11

Why is it incorrect to say heavy objects sink in water?

Physics
1 answer:
lesya [120]3 years ago
8 0
It is incorrect to say heavy objects sink in water because based on the density of the water it can actually cause the "heavy object" to float, out weighing it.
You might be interested in
A gasoline engine receives 200 J of energy from combustion and loses 150 J as heat to the exhaust. What is its efficiency? 75% 2
choli [55]
50/200×100%=25% is answer the formula is usefull energy output divided by total energy provided into 100%
8 0
3 years ago
Read 2 more answers
A baseball pitcher throws the ball towards the batter at 90 mph. His bat connects with the ball for a line drive, after which th
forsale [732]

Answer:

F=-18412.9N, where the minus indicates the direction is opposite to that of the throw.

Explanation:

a)

Since MKS stands for meter-kilogram-second and we know that:

1\ hour = 3600\ seconds

1\ mile = 1600\ meters

1000g = 1kg

We can write that:

\frac{1\ hour}{3600\ seconds}=1

\frac{1600\ meters}{1\ mile}=1

\frac{1kg}{1000g}=1

These are conversion factors, equal to 1, so multiplying our results by them won't change their value, only their units.

So we have that:

90 mph=90 \frac{miles}{hour}(\frac{1\ hour}{3600\ seconds})(\frac{1600\ meters}{1\ mile})=40m/s

110 mph=110 \frac{miles}{hour}(\frac{1\ hour}{3600\ seconds})(\frac{1600\ meters}{1\ mile})=48.89m/s

145 g=145 g(\frac{1kg}{1000g})=0.145kg

b)

Newton's 2nd Law tells us that F=ma, and the definition of acceleration is a=\frac{\Delta v}{\Delta t}, so we have:

F=m\frac{\Delta v}{\Delta t}=m\frac{v_f-v_i}{t}

Taking the throw direction as the positive one, for our values we have:

F=m\frac{v_f-v_i}{t}=(0.145kg)\frac{(-48.89m/s)-(+40m/s)}{0.0007s}=-18412.9N

4 0
3 years ago
The temperature of a black body is 500 and its radiation is of wavelength 600 . If the number of oscillators with energy is 100
stiks02 [169]

Answer: An equation is missing in your question below is the missing equation

a) ≈ 8396

b) 150 nm/k

Explanation:

<u>A) Determine the number of Oscillators in the black body</u>

number of oscillators = 8395

attached below is the detailed solution

<u>b) determine the peak wavelength of the black body </u>

Black body temperature = 20,000 K

applying Wien's law / formula

λmax = b / T  ------ ( 1 )

T = 20,000 K

b = 3 * 10^6 nm

∴  λmax = 150 nm/k

4 0
3 years ago
2.
saul85 [17]

Answer:

<u>B</u>

Explanation:

Planets have different year lengths because it depends how far they revolve from a celestial body. Each planet has its own orbital period. Planets closer to the star will have a lower orbital period compared to the ones that lie far away from it.

4 0
2 years ago
Read 2 more answers
The rocket's acceleration has components \(a_{x}(t)= \alpha t^{2}\) and \(a_{y}(t)= \beta - \gamma t\), where \(\alpha = 2.50 {\
lbvjy [14]
 it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt 
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x} 
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y} 
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ] 
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt 
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases 
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume 
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ] 
5 0
3 years ago
Other questions:
  • As you jump on a pogo stick where is the potential energy the greatest?
    14·1 answer
  • A conductor of radius r, length and resistivity ρ has resistance r. what is the new resistance if it is stretched to 4 times its
    5·1 answer
  • tony walks at an average speed of 70m/min from home to school. If the difference between his home and the school is 2100 m, how
    10·1 answer
  • During each cycle of operation a refrigerator absorbs 56 cal from the freezer compartment and expels 81 cal tothe room. If one c
    6·1 answer
  • The electric field in a region of space has the components Ey = Ez = 0 and Ex = (4.00 N/C · m) x. Point A is on the y axis at y
    12·1 answer
  • You hold a ruler that has a charge on its tip 6 cm above a small piece of tissue paper to see if it can be picked up. The ruler
    7·1 answer
  • If the force on an object is negative, what is known about the change in velocity?
    14·1 answer
  • The law of superposition states that in an undeformed sequence of sedimentary rocks the oldest rocks will be at the bottom while
    12·2 answers
  • C) Explain the following.<br>Keftles, cooking pans and iron boxes have polished surfaces​
    15·1 answer
  • For the circuit shown in the figure(figure 1) find the current through each resistor. Express your answers using two significant
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!