Answer:
A) B = 5.4 10⁻⁵ T, B) the positive side of the bar is to the West
Explanation:
A) For this exercise we must use the expression of Faraday's law for a moving body
fem = 
fem =
- d (B l y) / dt = - B lv
B = 
we calculate
B = - 7.9 10⁻⁴ /(0.73 20)
B = 5.4 10⁻⁵ T
B) to determine which side of the bar is positive, we must use the right hand rule
the thumb points in the direction of the rod movement to the south, the magnetic field points in the horizontal direction and the rod is in the east-west direction.
Therefore the force points in the direction perpendicular to the velocity and the magnetic field is in the east direction; therefore the positive side of the bar is to the West
Sure !
Start with Newton's second law of motion:
Net Force = (mass) x (acceleration) .
This formula is so useful, and so easy, that you really
should memorize it.
Now, watch:
The mass of the box is 5.25 kilograms, and the box is
accelerating at the rate of 2.5 m/s² .
What's the net force on the box ?
Net Force = (mass) x (acceleration)
= (5.25 kilograms) x (2.5 m/s²)
Net force = 13.125 newtons .
But hold up, hee haw, whoa ! Wait a second !
Bella is pushing with a force of 15.75 newtons, but the box
is accelerating as if the force on it is only 13.125 newtons.
What happened to the rest of Bella's force ? ?
==> Friction is pushing the box in the opposite direction,
and cancelling some of Bella's force.
How much ?
(Bella's 15.75 newtons) minus (13.125 that the box feels)
= 2.625 newtons backwards, applied by friction.
It is called air pressure
Constructive interference will occur, which means the waves will combine.
In destructive inference, the waves cancel each other out.
Hope this helps :)
In order to persuade the electrons in the wire to flow, you need
a potential difference between the ends of the wire. Then the
electrons will want to get away from the more-negative end and
go to the more-positive end. If both ends of the wire are at the
same potential, then the electrons have no reason to go anywhere,
and they just stay where they are.
Choice-d says this.