The complete balanced chemical reaction is:
2 AgNO3 + Na2S --> 2 NaNO3 + Ag2S
First let us calculate the number of moles of AgNO3.
moles AgNO3 = 0.315 M * 0.035 L
moles AgNO3 = 0.011025 mol
From the reaction, 1 mole of Na2S is needed for every 2
moles of AgNO3 hence:
moles Na2S required = 0.011025 mol AgNO3 * (1 mol Na2S / 2
mol AgNO3)
moles Na2S required = 5.5125 x 10^-3 mol
Therefore volume required is:
volume Na2S = 5.5125 x 10^-3 mol / 0.260 M
<span>volume Na2S = 0.0212 L = 21.2 mL</span>
Stationary Front: a front that is not moving. When a warm or cold front stops moving, it becomes a stationary front.
Answer : The rate law for the overall reaction is, ![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
As we are given the mechanism for the reaction :
Step 1 :
(slow)
Step 2 :
(fast)
Overall reaction : 
The rate law expression for overall reaction should be in terms of
.
As we know that the slow step is the rate determining step. So,
The slow step reaction is,

The expression of rate law for this reaction will be,
![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Hence, the rate law for the overall reaction is, ![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Answer:
a = 4
b = 3
Explanation:
<u>SOLUTION :-</u>
Balance it by using 'hit & trial' method , and you'll get the answer :-
2Fe₂O + 3C → <u>4</u>Fe + <u>3</u>CO₂
⇒ a = 4 ; b = 3
<u></u>
<u>VERIFICATION :-</u>
<em>In reactant side of equation :-</em>
- Number of atoms in Fe = 2×2 = 4
- Number of atoms in O = 2×3 = 6
- Number of atoms in C = 3×1 = 3
<em>In product side of equation :-</em>
- Number of atoms in Fe = 4×1 = 4
- Number of atoms in C = 3×1 = 3
- Number of atoms in O = 3×2 = 6
Number of atoms of each element is equal in both reactant & product side of equation. Hence , the equation is balanced.
Description:
<span>"0.0400 mol of H2O2 decomposed into 0.0400 mol of H2O and 0.0200 mol of O2."
This means that a certain amount of H2O2 (0.0400 mol) decomposed or was broken down into two components, 0.04 mol of H2O and 0.02 mol of O2. To examine the system, we need a balanced equation:
H2O2 ---> H2O + 0.5O2
The final concentrations of the system indicates that the system is in equilibrium. </span>