You already got the balanced equation. So the ratio of mole number is the ratio of the coefficient. Then the ratio of methyl alcohol and water is 2:4=1:2. The water generated is 0.38*2=0.76 mol.
Answer:
It's the button with the x, and a blank box above it.
Explanation:
Check the attachments, you'll see what it looks like. It will probably look different on your calculator, but the icon should be the same or similar.
i believe the answer is B: both wind up at 60°C
but it's also reasonable to assume, given enough time, they wind up at 20°C because the water would heat up to cool the metal then slowly release the heat to the air untill they both reach 20°C
if it were me I'd answer B, apologies if I'm wrong
Answer:
Empirical formula: BH3
Molecular Formula: B2H6
Explanation:
To solve the exercise, we need to know how many boron atoms and how many hydrogen atoms the compound has. We know that of the total weight of the compound, 78.14% correspond to boron and 21.86% to hydrogen. As the weight of the compound is between 27 g and 28 g, using the above percentages we can solve that the compound has between 21.1 g and 21.8 g of boron, and between 5.9 g and 6.1 g of hydrogen:
100% _____ 27 g
78.14% _____ x = 78.14% * 27g / 100% = 21.1 g boron
100% ______27 g
21.86% ______ x = 21.86% * 27g / 100% = 5.9 g hydrogen
100% _____ 28 g
78.14% _____ x = 78.14% * 28g / 100% = 21.8 g boron
100% _____ 28g
21.86% _____ x = 21.86% * 28g / 100% = 6.1 g hydrogen
So, if the atomic weight of boron is 10.8 g, there must be two boron atoms in the compound that sum 21.6 g. The weight of hydrogen is 1 g, so the compound must have six hydrogen atoms.
The molecular formula represents the real amount of atoms that form a compound. Therefore, the molecular formula of the compound is B2H6.
The empirical formula is the minimum expression that represents the proportion of atoms in a compound. For example, ethane has 2 carbon atoms and 6 hydrogen atoms, so its molecular formula is C2H6, however, its empirical formula is CH3. Therefore, the empirical formula of the boron compound is BH3.
Answer:
When mixing a base with a liquid, an acid-based reaction.
Explanation:
When an acid and a base are placed together, they react to neutralize the acid and base properties, producing a salt. The H(+) cation of the acid combines with the OH(-) anion of the base to form water.