In order to calculate the final temperature of the gas, we may apply Charles's law, which states that the pressure and temperature of a fixed amount of gas at constant volume are directly proportional. Mathematically:
P/T = constant
(absolute temperature is used, so T = 672 + 273 = 945 K)
Thus,
3.9 / 945 = 12.2 / T
T = 2,956 K or 2,683 °C
Answer:
C
Explanation:
Cause waves causes gravity to make higher waves
Plastics are non-corrosive and non-reactive in nature. So they are used for storing chemicals in the laboratory. They are used for strong chemicals because they do not react with chemicals neither do they corrode
It is an example of a molecule
Answer:
36.4 atm
Explanation:
To find the pressure, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = constant (0.0821 L*atm/mol*K)
-----> T = temperature (K)
Before you can plug the given values into the equation, you first need to convert Celsius to Kelvin.
P = ? atm R = 0.0821 L*atm/mol*K
V = 5.00 L T = 393 °C + 273.15 = 312.45 K
n = 7.10 moles
PV = nRT
P(5.00 L) = (7.10 moles)(0.0821 L*atm/mol*K)(312.45 K)
P(5.00 L) = 182.130
P = 36.4 atm