Answer:
<em>The object with the twice the area of the other object, will have the larger drag coefficient.</em>
<em></em>
Explanation:
The equation for drag force is given as

where
IS the drag force on the object
p = density of the fluid through which the object moves
u = relative velocity of the object through the fluid
p = density of the fluid
= coefficient of drag
A = area of the object
Note that
is a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. The most interesting things is that it is dependent on the linear dimension, which means that it will vary directly with the change in diameter of the fluid
The above equation can also be broken down as
∝
A
where
is the pressure exerted by the fluid on the area A
Also note that
= 
which also clarifies that the drag force is approximately proportional to the abject's area.
<em>In this case, the object with the twice the area of the other object, will have the larger drag coefficient.</em>
Answer:
Measurement is a comparison of an unknown quantity with a known fixed quantity of the same kind. The value obtained on measuring a quantity is called its magnitude. The magnitude of a quantity is expressed as numbers in its unit.
Answer:
The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²
Explanation:
We have expression for sound intensity level (SIL),

Here we need to find the intensity of sound (I).

Substituting
L = 67 dB and I₀ = 10⁻¹² W/m² in the equation

The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²
Answer:

Explanation:
I'm assuming the units for force and mass are Newtons and kilograms, respectively.
Rearranging Newton's first law (F=m*a) to solve for acceleration:
F=m*a

The acceleration is 4 meters per second squared and was found by rearranging Newton's first law in order to solve for acceleration.