This item is solved through the concept of the conservation of momentum which states that the momentum before and after collision should be equal.
momentum = mass x velocity
(1,600 kg)(16 m/s) + (1.0x10^3 kg)(10 m/s) = (1600 + 1000 kg)(x)
The value of x is 13.69 m/s. Thus, their final speed is approximately letter D. 14 m/s.
Answer:
Explanation:
The vertical component of velocity remains same as the free fall. The vertical motion of the projectile is same as the free fall motion.
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is

where D=5.00 m is the distance of the screen from the slits, and

is the distance between the two slits.
The fringes on the screen are 6.5 cm=0.065 m apart from each other, this means that the first maximum (m=1) is located at y=0.065 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:

And from the relationship between frequency and wavelength,

, we can find the frequency of the light: