Answer:
-26 m/s.
Explanation:
Hello,
In this case, since the vertical initial velocity is 26 m/s and the vertical final velocity is 0 m/s at P, we compute the time to reach P:

With which we compute the maximum height:

Therefore, the final velocity until the floor, assuming P as the starting point (Voy=0m/s), turns out:

Which is clearly negative since it the projectile is moving downwards the starting point.
Regards.
The common value for “Speed of light in vacuum” is
metre per second.
Answer: Option b
<u>Solution:
</u>
Speed of light can be defined as the speed with which light waves propagate in different medium. In vacuum, speed of light is 186,282 miles per second or 299,792 km/s which is rounded off as
.
“Speed of light in vacuum” is a universal constant and usually represented by ‘c’. Light waves travels at a speed of
metre per second in vacuum.
Answer:
Explanation:
a )
moment of inertia of hollow ball
= 2 / 3 mR² , m is mass and R is radius of the ball
= 2 / 3 x 120 x .5²
= 20 kg m²
b )
5 rpm = 5 / 60 rps
n = .0833
angular velocity ω = 2πn= 2 x 3.14 x .0833= .523 rad /s
angular acceleration = increase in angular velocity / time
= .523 - 0 / 20
α = .02615 rad /s²
c )
Torque = moment of inertia x angular acceleration
= 20 x .02615
= .523 Nm
d )
θ = 1/2 α t²
= .5 x .02615 x 20²
= 5.23
2π n = 5.23 where n is required number
n = .83