Using
KE = ½mv² = ½×1500×19×19 = 270750 joules
Answer:
The half-life is 
Explanation:
Using the decay equation we have:

Where:
- λ is the decay constant
- A(0) the initial activity
- A is the activity at time t
We know the activity decrease by a factor of two in a one hour period (t = 1 h), it means that


Taking the natural logarithm on each side we have:


Now, the relationship between the decay constant λ and the half-life t(1/2) is:




I hope it helps you!
To solve this problem we will apply the concepts related to the kinematic equations of linear motion. We will calculate the initial velocity of the object, and from it, we will calculate the final position. With the considerations made in the statement we will obtain the total height. Initial velocity of the acorn,

Also, it is given that the acorn takes 0.201s to pass the length of the meter stick.

Replacing,


The height of the acorn above the meter stick can be calculated as,




Also the top of the meter stick is 1.87m above the ground hence the height of the acorn above the ground is


Answer:
In a series circuit, how does the voltage supplied by the battery compare to the voltage on each load? The voltage of the battery is equal to the voltage of each load added together. ... The voltage across the two resistors must both have the same voltage of the battery.
Explanation:
<em>mark me</em><em> </em><em>as BRAINLIEST</em><em> </em>
<em>follow me</em><em> </em>
<em>carry on</em><em> </em><em>learning</em><em> </em>