In addition to acceleration of gravity we experience centrifugal acceleration away from the axis of rotation of the earth. this additional acceleration has value ac = r w^2 where w = angular velocity and r is distance from your spot on earth to the earth's axis of rotation so r = R cos(l) where l = 60 deg is the lattitude and R the earth's radius and w = 1 / (24hr x 3600sec/hr)
<span>now you look up R and calculate ac then you combine the centrifugal acc. vector ac with the gravitational acceleration vector ag = G Me/R^2 to get effective ag' = ag -</span>
Answer:
800 mL
Explanation:
D*V=M
You pick out the numbers as well as what it is they represent from the word problem/explanation, then from there plug them in to the equations. Once you do that, you get your product and have the answer.
10*80= 800
Answer:
490N
Explanation:
According Newton's second law!
\sum Force = mass × acceleration
Fm - Ff = ma
Fm is the moving force
Ff s the frictional force = 100N
mass = 65kg
acceleration = 6m/s²
Required
Moving force Fm
Substitute the given force into thr expression and get Fm
Fm -100 = 65(6)
Fm -100 = 390
Fm = 390+100
Fm = 490N
Hence the force that will cause two cart to move is 490N
Answer:
Explanation:
The average pressure at mean sea-level (MSL) in the International Standard Atmosphere (ISA) is 1013.25 hPa, or 1 atmosphere (atm), or 29.92 inches of mercury. Pressure (p), mass (m), and the acceleration due to gravity (g), are related by P = F/A = (m*g)/A, where A is surface area.