The force (F) of attraction or repulsion between two point charges (Q1 and Q2) is given by the following rule:
F = <span>(k * q1 * q2) / (r^2) where:
</span>q1 and q2 are the charges
k is coulomb's constant = 9 x 10^9<span> N. m</span>2/ C<span>2
</span>r is the distance between the two charges.
Applying the givens in the mentioned equation, we find that:
F = (9 x 10^9<span> x 0.07 x 10^6 x 2) / (0.0108)^2 = 1.08 x 10^19 n </span>
Answer:
The track's angular velocity is W2 = 4.15 in rpm
Explanation:
Momentum angular can be find
I = m*r^2
P = I*W
So to use the conservation
P1 + P2 = 0
I1*W1 + I2*W2 = 0
Solve to w2 to find the angular velocity
0.240kg*0.30m^2*0.79m/s=-1kg*0.30m^2*W2
W2 = 0.435 rad/s
W2 = 4.15 rpm
The force exerted by the laser beam on a completely absorbing target is .
The given parameters;
- <em>power of the laser light, P = 1050 W</em>
- <em>wavelength of the emitted light, λ = 10 μm </em>
The speed of the emitted laser light is given as;
v = 3 x 10⁸ m/s
The force exerted by the laser beam on a completely absorbing target is calculated as follows;
P = Fv
Thus, the force exerted by the laser beam on a completely absorbing target is .
Learn more here:brainly.com/question/17328266
Answer:
Gene Sarazen began to win tournaments in 1935 with a new club he had invented that was specialized for sand play. He is hailed as the inventor of the sand wedge.
Explanation:
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six classical simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width.[1][2] Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle.
The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported.
The wedge simply transports energy and collects it to the pointy end, consequently breaking the item. In this way, much pressure is put on a thin area.
The path the bowling ball would most closely follow after leaving the airplane is horizontal direction.
<h3>
Path of the bowling ball</h3>
Based on the law of inertia, which is the reluctance of an object to stop moving once in motion or start moving when it is at rest.
The bowling ball will maintain the path of the airline in the first few seconds of fall, after which it will change its path to vertical direction.
Thus, the path the bowling ball would most closely follow after leaving the airplane is horizontal direction.
Learn more about horizontal direction here: brainly.com/question/2534565
#SPJ1