Its tangential speed is constant although its velocity is changing. As the object changes direction, it results in a changing of positive and negative signs of the velocity. Although, the magnitude of the velocity (speed) is not changing.
Answer:
Do find the answer in the attachment herein.
Explanation:
From the attached diagram:
I. Activation energy = Activated complex - ∆H(reactants)
Activation energy = 162-140 = 22Kj.
II. ∆H(reaction) = ∆H(products) - ∆H(reactants)
∆H(reaction) = 37 - 140 = -103Kj.
Answer:
The gravitational force between m₁ and m₂, is approximately 1.06789 × 10⁻⁶ N
Explanation:
The details of the given masses having gravitational attractive force between them are;
m₁ = 20 kg, r₁ = 10 cm = 0.1 m, m₂ = 50 kg, and r₂ = 15 cm = 0.15 m
The gravitational force between m₁ and m₂ is given by Newton's Law of gravitation as follows;

Where;
F = The gravitational force between m₁ and m₂
G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²
r₂ = 0.1 m + 0.15 m = 0.25 m
Therefore, we have;

The gravitational force between m₁ and m₂, F ≈ 1.06789 × 10⁻⁶ N