There is one mistake in the question.The Correct question is here
A cat falls from a tree (with zero initial velocity) at time t = 0. How far does the cat fall between t = 1/2 and t = 1 s? Use Galileo's formula v(t) = −9.8t m/s.
Answer:
y(1s) - y(1/2s) = - 3.675 m
The cat falls 3.675 m between time 1/2 s and 1 s.
Explanation:
Given data
time=1/2 sec to 1 sec
v(t)=-9.8t m/s
To find
Distance
Solution
As the acceleration as first derivative of velocity with respect to time
So
acceleration(-g)= dv/dt
Solve it
dv = a dt
dv = -g dt
v - v₀ = -gt
v= dy/dt
dy = v dt
dy = ( v₀ - gt ) dt
y(1s) - y(1/2s) = ( v₀ ) ( 1 - 1/2 ) - ( g/2 )[ ( t1)² -( t1/2s )² ]
y(1s) - y(1/2s) = ( - 9.8/2 ) [ ( 1 )² - ( 1/2 )² ]
y1s - y1/2s = ( - 4.9 m/s² ) ( 3/4 s² )
y(1s) - y(1/2s) = - 3.675 m
The cat falls 3.675 m between time 1/2 s and 1 s.
Echoes occur when a reflected soundwave reaches the ear more than 0.1 seconds after the original sound wave was heard. ... There will be an echoinstead of a reverberation. Reflection of sound waves off of surfaces is also affected by the shape of the surface.
(mark as brainly please)
The equations are analogous to that for linear movement:
acceleration = (final velocity - initial velocity) / time
acceleration = (3000 rpm - 0 rpm) / 2.0 s
a) acceleration = 1500 rpm/s or 25 rp(s^2)
For the displacement
displacement = initial velocity*time + 0.5*acceleration*time^2
displacement = (0)*(2 s) + (0.5)(25 rps^2)*(2 s)^2
b) displacement = 50 revolutions
Answer: D. It is a SUSPENSION
Explanation:
SUSPENSION
This is a combination of two or more single substances. The properties of the components involved are not however changed or lost as is the case with compounds.
For this reason this mixture can be separated due to sedimentation or filtering.
After a few days, this occurs in the aqueous nickel sulfide because the solid nickel sulfide is separating from the water.
The "penetration of the bullet" is 5 m
<u>Explanation</u>:
A "bullet" with "kinetic energy" of = 400J
A resistive force stops the bullet = 8.00 x 10 N
Work = change in energy
Work = ∆ Kinetic Energy (equation 1)
Work =
(equation 2)
From equations 1 and 2 we have,
= ∆ Kinetic Energy
Where
,
Kinetic Energy = 400 J
F = 8.00 x 10 N
(8.00 x 10 N) d = 400 J
(80 N) d = 400 J

d = 5 m
The penetration of the bullet is 5 m