Answer:
Explanation:
Time to cover first 100 km = 1 hour.
time remaining = 3.15 - 1 = 2.15 hour .
Time to cover next 42 km = 1 hour .
Time remaining = 2.15-1 = 1.15 hour.
Distance to be covered = 310 - 142
= 168 km
least speed needed = distance remaining / time remaining
= 168 / 1.15
= 146.08 km / h .
The answer is letter A. meteorite bombardment.
During the Earth's earliest beginning, it went through a period of catastrophic and intense formation. By 3-8- 4.1 billion years ago, Earth's atmosphere was never the same as today. This is because of its formation during the pre-Cambrian period whereby t<span>he Earth formed under so much heat and pressure that it formed as a
molten planet.
</span>
Earth was bombarded continuously by the remnants
of the dust and debris — like asteroids, meteors and comets — until it formed
into a solid sphere, pulled into orbit around the sun and began to cool down during the Hellish period (4.5 to 3.8 billion years ago).
<span> </span>.To know more of this topic, see attached file.
You would use distance an time formula to mathmaticly solve
Answer:

Explanation:
Using the tension in the spring and the force of the tension can by describe by
T = kx
, T = mg
Therefore:

With two springs, let, T1 be the tension in each spring, x1 be the extension of each spring. The spring constant of each spring is 2k so:


Solve to x1





Answer:
B: False
Explanation:
The second law of thermodynamics states that: the entropy of an isolated system will never decrease because isolated systems always tend to evolve towards thermodynamic equilibrium which is a state with maximum entropy.
Thus, it means that the entropy change will always be positive.
Therefore, the given statement in the question is false.