Answer:
<em>The gravitational potential energy of the parachutist is 3,528,000 J</em>
Explanation:
<u>Gravitational Potential Energy
</u>
It's the energy stored in an object because of its height in a gravitational field.
It can be calculated with the equation:
U=m.g.h
Where:
m = mass of the object
h = height with respect to a fixed reference
g = acceleration of gravity, usually taken as
.
The parachutist has a mass of m=120 kg and he jumps at a height of h= 3,000 m. Computing the gravitational potential energy:
U = 120 * 3,000 * 9.8
U = 3,528,000 J
The gravitational potential energy of the parachutist is 3,528,000 J
The doppler radar is used in technology in two ways;
<span>·
</span>Continuous Doppler radar – it has the capability
of receiving signals in means to provide output in velocity from the target
<span>·
</span>It may be use as radar gun in which police use
to detect speeding.
I agree with you the answer is A
If that statement were true, then you would never have any reason to eat.
It might taste good for a while, but it would never help you stand up and
move around.
Where WOULD you get the energy to stand up and walk, if it didn't
come from food ? ?
The whole idea is pretty absurd. I guess the statement is not true.
<span>A. </span>Let’s
say the horizontal component of the velocity is vx and the vertical is vy. <span>
Initially at t=0 (as the mug leaves the counter) the
components are v0x and v0y.
<span>v0y = 0 since the customer slides it horizontally so applied
force is in the x component only.
<span>The equations for horizontal and vertical projectile motion
are:
x = x0 + v0x t
y = y0 + v0y t - 1/2 g t^2 = y0 - 1/2 g t^2 </span></span></span>
Setting the origin to be the end corner of the
counter so that x0=0 and y0=0, hence:
x = v0x t
y = - 1/2 g t^2
Given value are: x=1.50m and y=-1.15m (y is
negative since mug is going down)
<span>1.50m = v0x t
----> v0x= 1.50/t</span>
<span>-1.15m = -(1/2) (9.81) t^2 -----> t =0.4842 s</span>
Calculating for v0x:
v0x = 3.10 m/s
<span>B. </span>v0x
is constant since there are no other horizontal forces so, v0x=vx=3.10m/s
vy can be calculated from the formula:
<span>vy = v0y + at where a=-g
(negative since going down)</span>
vy = -gt = -9.81 (0.4842)
vy = -4.75 m/s
Now to get the angle below the horizontal, tan(90-Ø) = -vx/vy
tan(90-Ø )= 3.1/4.75
Ø =
56.87˚<span> below the horizontal</span>