Answer:
See explanation
Explanation:
If the spot in TLC is below the solvent front, it will be observed that the spot, instead of being separated by the solvent as expected, will just dissolve away in the solvent and zero actual separation of the mixture is achieved.
If the solute is dissolved away instead of being separated by the solvent, then the experiment fails because no actual separation of the mixture is achieved.
Hence, in TLC, the spot must be applied above the solvent front so that the capillary movement of the solvent through the plate can lead to the eventual separation of the components of the mixture since the various components of the mixture will travel at different speeds through the plate.
Also, if the solvent is above the spot, the solvent may evaporate selectively from the points above the spot while separation is ongoing.
Answer:
break it down and just put the numbers
Explanation:
Answer: The increase in solubility or the rate of dissolving process of a gaseous solute in a liquid solvent is due to following:
- Increasing agitation
- Increasing temperature
- Increasing solute's partial pressure over the solvent
- Increasing solute's surface area
Explanation:
When agitation is increased then there will occur an increase in kinetic energy of the molecules of a substance. As a result, more number of collisions will take place due to which more amount of solute will dissolve into the solvent.
Similarly, increasing the temperature will further increase the kinetic energy of molecules. Hence, this will lead to more solubility of gaseous solute into the liquid solvent.
As solubility of a gas is directly proportional to the pressure of the gas above surface of the solution. So, an increase in solute's partial pressure over solvent will also lead to an increase in solubility of gaseous solute into liquid solvent.
When surface area of solute is increased then there will be more solute particles available for reaction. Hence, more collisions will take place. As a result, rate of reaction is more due to which there will be an increase in solubility.
Thus, we can conclude that the increase in solubility or the rate of dissolving process of a gaseous solute in a liquid solvent is due to following:
- Increasing agitation
- Increasing temperature
- Increasing solute's partial pressure over the solvent
- Increasing solute's surface area
Answer:
1.209g of MgO participates
Explanation:
In this problem, we have 0.030 moles of MgO that participates in a particular reaction.
And we are asked to solve for the mass of MgO that participates, that means, we need to convert moles to grams.
To convert moles to grams we need to use molar mass of the compound:
<em>1 atom of Mg has a molar mass of 24.3g/mol</em>
<em>1 atom of O has a molar mass of 16g/mol</em>
<em />
That means molar mass of MgO is 24.3g/mol + 16g/mol = 40.3g/mol
And mass of 0.030 moles of MgO is:
0.030 moles MgO * (40.3g/mol) =
<h3>1.209g of MgO participates</h3>
Answer:
Gram
Explanation:
The SI unit of mass is grams.
Mass is the measure of matter contained in a substance. It is usually determined by weighing an amount of substance on a balance or scale.
- Mass is a fundamental quantity
- So, the unit of mass is grams.
- Ounce and pounds are other units but not the standard one.
- Newton is the unit of force and weight.