Answer:
12 * Answer:
12 x 3 = 36 + 6 = 42,
Step-by-step explanation:
Step-by-step explanation:
Answer:
the amount of time until 23 pounds of salt remain in the tank is 0.088 minutes.
Step-by-step explanation:
The variation of the concentration of salt can be expressed as:

being
C1: the concentration of salt in the inflow
Qi: the flow entering the tank
C2: the concentration leaving the tank (the same concentration that is in every part of the tank at that moment)
Qo: the flow going out of the tank.
With no salt in the inflow (C1=0), the equation can be reduced to

Rearranging the equation, it becomes

Integrating both sides

It is known that the concentration at t=0 is 30 pounds in 60 gallons, so C(0) is 0.5 pounds/gallon.

The final equation for the concentration of salt at any given time is

To answer how long it will be until there are 23 pounds of salt in the tank, we can use the last equation:

Given Information:
number of trials = n = 1042
Probability of success = p = 0.80
Required Information:
Maximum usual value = μ + 2σ = ?
Minimum usual value = μ - 2σ = ?
Answer:
Maximum usual value = 859.51
Minimum usual value = 807.78
Step-by-step explanation:
In a binomial distribution, the mean μ is given by
μ = np
μ = 1042*0.80
μ = 833.6
The standard deviation is given by
σ = √np(1 - p)
σ = √1042*0.80(1 - 0.80)
σ = √833.6(0.20)
σ = 12.91
The Maximum and Minimum usual values are
μ + 2σ = 833.6 + 2*12.91
μ + 2σ = 833.6 + 25.82
μ + 2σ = 859.51
μ - 2σ = 833.6 - 25.82
μ - 2σ = 807.78
Therefore, the minimum usual value is 807.78 and maximum usual value is 859.51
Answer:
(4,-2)
Step-by-step explanation:
x = 4
y = -2
220, percentage decreased by 15% (percent) of its value = 187