Answer:
t = 444.125 sec
Explanation:
Given data:
V = 24 volt
I = 0.1 ampere
mass of water mw = 51 gm
cr = 4.18 J/gm degree K^-1
mass of resistor = 8 gm
cr = 3.7 J/gm degree K^-1
we know that power is given as
Power P = VI
But P =E/t
so equating both side we have

solving for t


t = 444.125 sec
The speed that the person needs to leave the ground will be 4.32m/s
From the question given,
Height = 95cm
Since the person leave the ground v = 0m/s
acceleration due to gravity g = 9.8m/s²
Using the equation of motion
v² = u² + 2as
a = -g (upward motion)
s = h (distance changes to height)
The equation will become:
0² = u² - 2gh
0² = u² - 2(9.8)(0.95)
u² = 18.62
u = √18.62
u = 4.32
Hence the speed that the person needs to leave the ground will be 4.32m/s
Learn more here: brainly.com/question/20352766
Answer:
Geographers explore both the physical properties of Earth's surface and the human societies spread across it. They also examine how human culture interacts with the natural environment, and the way that locations and places can have an impact on people.
Gravitational potential energy can be given by the equation
PE = mgh
where m is the mass,
g is the gravitational constant 9.81 or 10 depending on rounding
and h is the height
well weight is a force equiavlent to
W= m*g
so comparing that to the potential energy equation, divide the potential energy by the height and you will get weight in Newtons
Answer:
The net charge on the shell is 30x10^-9C
Explanation:
Pls see attached file