Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.
The answer is A
Materials that are good conductors of thermal energy are called thermal conductors. Metals are very good thermal conductors. Materials that are poor conductors of thermal energy are called thermal insulators. Gases such as air and materials such as plastic and wood are thermal insulators
The answer to the question<u> What shape is the graph produced by a force vs acceleration graph</u> is A. Linear
Since Force, F = ma where m = mass and a = acceleration. For constant mass, F ∝ a. That is, F is directly proportional to acceleration, a.
Since this is a linear relationship, the graph of force vs acceleration will be linear.
The answer to the question<u> What shape is the graph produced by a force vs acceleration graph</u> is A. Linear
Learn more about graphs here:
brainly.com/question/24322515
Answer: True!
Explanation: The force is proportional to the square of the distance between 2 point masses
Answer:
Magnetic flux has formular: BA while Magnetic flux linkage has formula: NBA
Explanation:
N is number of turns of a coil
B is magnetic flux density across the coil
A is area of coil
