Answer:
Recall that the electric field outside a uniformly charged solid sphere is exactly the same as if the charge were all at a point in the centre of the sphere:

lnside the sphere, the electric field also acts like a point charge, but only for the proportion of the charge further inside than the point r:

To find the potential, we integrate the electric field on a path from infinity (where of course, we take the direct path so that we can write the it as a 1 D integral):

=![\frac{q}{4\pi e_{0} } [\frac{1}{R} -\frac{r^{2}-R^{2} }{2R^{3} } ]](https://tex.z-dn.net/?f=%5Cfrac%7Bq%7D%7B4%5Cpi%20e_%7B0%7D%20%7D%20%5B%5Cfrac%7B1%7D%7BR%7D%20-%5Cfrac%7Br%5E%7B2%7D-R%5E%7B2%7D%20%20%7D%7B2R%5E%7B3%7D%20%7D%20%5D)
∴NOTE: Graph is attached
It is actually caused by the environment, so its false. :)
Because the electromagnets can pick up magnetic material and move it around, hope this helps
<span>2002 seconds, or 33 minutes, 22 seconds.
First, let's calculate how many joules it will take to lift 78 kg against gravity for 1100 meters. So:
78 kg * 9.8 m/s^2 * 1100 m = 840840 kg*m^2/s^2
Now a watt is defined as kg*m^2/s^3, so a division of the required joules should give us a convenient value of seconds. So:
840840 kg*m^2/s^2 / 420 kg*m^2/s^3 = 2002 seconds.
And 2002 seconds is the same as 33 minutes, 22 seconds.</span>
<span>The particles in a gas are apart and moving fast, so the forces of attraction are too weak to have a noticeable effect.</span>