Answer:
2 C2H6 + 7 O2 = 4 CO2 + 6 H2O
Explanation:
The Bold Numbers are what you should put. This is balanced
Answer:
<h2>0.75 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>0.75 g/mL</h3>
Hope this helps you
Answer:
9.89 x 10²³ molecules H₂S
Explanation:
To find the molecules of H₂S, you need to (1) convert grams S to moles S (via the atomic mass of sulfur), then (2) convert moles S to moles H₂S (via the mole-to-mole ratio from equation coefficients), and then (3) convert moles H₂S to molecules H₂S (via Avogadro's Number). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to match the sig figs of the given value.
Atomic Mass (S): 32.065 g/mol
2 H₂S(s) + SO₂(g) -----> 3 S(s) + 2 H₂O(l)
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
79.0 g S 1 mole 2 moles H₂S 6.022 x 10²³ molecules
--------------- x --------------- x ---------------------- x ------------------------------------- =
32.065 g 3 moles S 1 mole
= 9.89 x 10²³ molecules H₂S
Answer:
now this area isn't my expertise so take this with a grain of salt but I believe its about 91125 g
Explanation:
8 cm is about 45g cube that and its 91125 g
Answer:
c = 0.13 j/ g.°C
Explanation:
Given data:
Mass of mercury = 29.5 g
Initial temperature = 32°C
Final temperature = 161°C
Heat absorbed = 499.2 j
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 - T1
ΔT = 161°C - 32°C
ΔT = 129 °C
Q = m.c. ΔT
c = Q / m. ΔT
c = 499.2 j / 29.5 g. 129 °C
c = 499.2 j / 3805.5 g. °C
c = 0.13 j/ g.°C