Answer:
166 g
Explanation:
Step 1: Write the reaction for the obtaining of Fe from magnetite
Fe₃O₄ ⇒ 3 Fe + 2 O₂
Step 2: Calculate the moles corresponding to 120 g of Fe
The molar mass of Fe is 55.85 g/mol.
120 g × (1 mol/55.85 g) = 2.15 mol
Step 3: Calculate the moles of Fe₃O₄ required to produce 2.15 moles of Fe
The molar ratio of Fe₃O₄ to Fe is 1:3. The moles of Fe₃O₄ required are 1/3 × 2.15 mol = 0.717 mol
Step 4: Calculate the mass corresponding to 0.717 moles of Fe₃O₄
The molar mass of Fe₃O₄ is 231.53 g/mol.
0.717 mol × 231.53 g/mol = 166 g
<span>We are given the initial amount of 1 million carbon-14 atoms and the final amount which is 1/16 of the current atmospheric 14C levels. Also, the half life of carbon is </span>5,750 years. WE can use the decay formula
Aₓ = A₀e^-(ln2/t1/2)t
1,000,000(1/16) = (1,000,000)e^-(ln2/5750)t
t = 23,000 years
Answer:
See Explanation
Explanation:
What Adi failed to realize is that the oily substance that was obtained from lavender consists of a mixture of substances. It is not only the required fragrance that is present in the extract.
This experiment will not work because those other components in the mixture may be erroneously identified when they show up in the mass spectrum of the extract and may be mistaken for the fragrance in question.
Hence the experiment will not work because; if some kind of separation method is not used to identify other impurities in the oil, many other substances may be mistaken for the actual fragrance.
Noble gases react very unwillingly, because the outermost shell of electrons orbiting the nucleus is full, giving these gases no incentive to swap electrons with other elements. As a result, there are very few compounds made with noble gases. Like its noble gas comrades, neon is odorless and colorless.
A) Ca(OH)2 + CO2 —> CaCO3 + H2O
B) when Ca(OH)2 is reacted with CO2, the CaCO3 produced is a precipitate which turns the solution milky