Answer:
(a)
(b) 
Explanation:
Part (a)
The total length of copper cord L=86.3 m
The cross sectional area A=1.71×10⁻⁶m²
The resistivity of copper p=1.72×10⁻⁸Ω
Thus the resistance of extension cord is

Part (b)
The resistance of trimmer Rt=17.9 ohms
When voltage of 120V is applied then the current I is passing through series circuit is

Thus the voltage across the trimmer is:

Answer:
C. strike-slip fault
Explanation:
The scientist must have observed a strike- slip fault.
A fault is an evidence of brittle deformation of the crust in the presence of applied stress on earth materials. Here, the earth material is the rock subjected to tension.
Where a fault occurs, there must have been movement between two blocks of rocks. The direction of movement helps us to delineate the fault type.
- When two blocks moves past each other horizontally, it is a strike-slip fault like rubbing your palms together.
- When a block moves in the direction of the dip, it forms a dip-slip fault which results in a fault-block mountain characterized by graben and horst systems.
Option A, Plateau is a table landform usually a mountain with flat peak.
Option B is a bowl shaped stratigraphic pattern in which the youngest sequence is at the core of the strata or a fold.
So, the most fitting option is C, a strike-slip fault.
That would be <span>the national chairperson
-I hope this helped.</span>
Answer:W = 1.23×10^-6BTU
Explanation: Work = Surface tension × (A1 - A2)
W= Surface tension × 3.142 ×(D1^2 - D2^2)
Where A1= Initial surface area
A2= final surface area
Given:
D1=0.5 inches , D2= 3 inches
D1= 0.5 × (1ft/12inches)
D1= 0.0417 ft
D2= 3 ×(1ft/12inches)
D2= 0.25ft
Surface tension = 0.005lb ft^-1
W = [(0.25)^2 - (0.0417)^2]
W = 954 ×10^6lbf ft × ( 1BTU/778lbf ft)
W = 1.23×10^-6BTU