Imagine a lonely asteroid there in space, untouched, not rotating, just still. Then another asteroid passes by and comes into contact with that first asteroid. Upon collision, based on the conservation of elastic momentum, the asteroid that was once still moves; it may even spin if the incoming asteroid hit it at its side. Now asteroids have three angles or rotation (three dimensions): θ (theta - to the x-axis), φ (phi - to the y-axis), and let's say ψ (psi - to the z-axis). So these asteroids wobble through space, spinning like crazy.
I may have gone too in depth. Sorry, lol.
I hope this helped!
Answer:
45.6 cm
Explanation:
Let x (m) be the length that the spring is compressed. We know that when we drop the mass from 4.84 m above and compress the springi, ts gravitational energy shall be converted to spring potential energy due to the law of energy conservation


where h = 4.84 + x is the distance from the dropping point the the compressed point, and k = 24N/cm = 2400N/m is the spring constant, g = 9.81 m/s2 is the gravitational acceleration constant. And m = 4.8 kg is the object mass.



or 45.6 cm
distance of each pan from the center or fulcrum is given as

now if dishonest shopkeeper shifted it by 0.633 cm from center
so distance on each side is given as


now the weight is balance as


now we will have

now we can find the percentage change as


Answer:
a)
= 4.67m/s
b) V = 8.29 m/s
Explanation:
Givens:
The bullet is 5.30g moving at 963m/s and its speed reduced to 426m/s. The wooden block is 610g.
a) From conservation of linear momentum
Pi = Pf

where
are the mass and the initial velocity of the bullet,
and
are the mass and the initial velocity of the wooden block, and
and
are the final velocities of the wooden block and the bullet
The wooden block is initial at rest
this yields

By solving for
adn substitute the givens
= 
= 
= 4.67m/s
b) The center of mass speed is defined as

substituting:

V = 8.29 m/s
<span>Let's convert the speed to m/s:
speed = (55 mph) (1609.3 m / mile) (1 hour / 3600 seconds)
speed = 24.59 m/s
Let's convert the mass to kilograms:
mass = (2135 lb) (0.45359 kg / lb)
mass = 968.4 kg
We can find the kinetic energy KE:
KE = (1/2) m v^2
KE = (1/2) (968.4 kg) (24.59 m/s)^2
KE = 292780 joules
The kinetic energy of the automobile is 292780 joules.</span>