Explanation:
The 2019 water crisis in Chennai has made us realize the importance of saving water more than ever. Water, as we all know, is a finite resource without which our planet would be a barren wasteland. Today with our increasing population it would be logical to say that our water consumption has also increased. And with increasing demand and lesser supply, water scarcity arises. Our ancestors who had foreseen the potential dangers of water scarcity had developed methods to conserve water that was suited for the varied terrain of the Tamil-speaking kingdoms.
Traditional Rainwater Conservation methods of Tamil Nadu
Eri
There are no perennial rivers in Tamil Nadu except the Thamirabharani River which flows through Thirunelveli district. And so, several hundred years ago a simple system was devised to utilize the rainwater to the fullest. An Eri or tank system is one of the oldest forms of water conservation systems in India. Many Eris are still in use in Tamil Nadu and play an active role in irrigation. They act as water reservoirs and flood control systems. They prevent soil erosion, recharge groundwater, and prevent wastage of runoff water during heavy rainfall.
Kudimaramathu
Kudimaramathu is one of the old traditional practice of stakeholders participating in the maintenance and management of irrigation systems. During earlier days, citizens of a village used to actively participate in maintaining the water bodies of their village by deepening and widening the lakes and ponds and restoring the water bodies back to their original form. The silt, rich in nutrients, collected in the process would be used by the farmers themselves in their field. A sense of collective ownership ensured the continued survival of the water bodies.
A covalent bond is formed between two non-metals that have similar electronegativities.
An <em>i</em><em>o</em><em>n</em><em>i</em><em>c</em><em> </em><em>b</em><em>o</em><em>n</em><em>d</em> is formed between a metal and a non-metal. Non-metals(-ve ion) are "stronger" than the metal(+ve ion) and can get electrons very easily from the metal. These two opposite ions attract each other and form the ionic bond.
Answer:
of 0.056 M HF solution is 
Explanation:
cM 0 0
So dissociation constant will be:
Give c= 0.056 M and
= ?
Putting in the values we get:
Thus
of 0.056 M HF solution is 
Answer: Energy of reactants = 30, Energy of products = 10
Exothermic
Activation energy for forward reaction is 10.
Explanation:
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
Energy of reactants = 30
Energy of products = 10
Thus as energy of the product < energy of the reactant, the reaction is exothermic.
Activation energy
is the extra energy that must be supplied to reactants in order to cross the energy barrier and thus convert to products.
for forward reaction is (40-30) = 10.
<u>Answer:</u> The amount of heat required to warm given amount of water is 470.9 kJ
<u>Explanation:</u>
To calculate the mass of water, we use the equation:

Density of water = 1 g/mL
Volume of water = 1.50 L = 1500 mL (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

To calculate the heat absorbed by the water, we use the equation:

where,
q = heat absorbed
m = mass of water = 1500 g
c = heat capacity of water = 4.186 J/g°C
= change in temperature = 
Putting values in above equation, we get:

Hence, the amount of heat required to warm given amount of water is 470.9 kJ