Answer:
Hydrogen: -141 kJ/g
Methane: -55kJ/g
The energy released per gram of hydrogen in its combustion is higher than the energy released per gram of methane in its combustion.
Explanation:
According to the law of conservation of the energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qc + Qb = 0
Qc = -Qb [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Q = C . ΔT
where,
C is the heat capacity
ΔT is the change in the temperature
<h3>Hydrogen</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (14.3°C) = -162 kJ
The heat released per gram of hydrogen is:

<h3>Methane</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (7.3°C) = -82 kJ
The heat released per gram of methane is:

Answer:
S(s) + O2(g) --> SO2(g)
Upper S (s) plus upper O subscript 2 (g) right arrow with delta above upper S upper O subscript 2 (g).
Explanation:
The reaction is given as;
Sulfur + oxygen --> Sulphur dioxide
Sulphur = S
Oxygen = O2
Sulfur dioxide = SO2
So we have;
S(s) + O2(g) --> SO2(g)
The crrect option is option A. Upper S (s) plus upper O subscript 2 (g) right arrow with delta above upper S upper O subscript 2 (g).
Answer:
212.304 grams
Explanation:
similar to your other question, use the same formula
q=mCpΔT
23617=m(4.182)(46.6-20)
23617=111.2412m
m=212.304g
Answer:
C Accelerometer
Explanation:
An accelerometer is an electromechanical device used to measure acceleration forces. Such forces may be static, like the continuous force of gravity or, as is the case with many mobile devices, dynamic to sense movement or vibrations. Acceleration is the measurement of the change in velocity, or speed divided by time.
Hpoe this Helps!
Answer:
148.04 kJ/mol
Explanation:
Let's consider the following thermochemical equation.
NO(g) + 1/2 O₂(g) → NO₂(g) ΔH°rxn = -114.14 kJ/mol
We can find the standard enthalpy of formation (ΔH°f) of NO(g) using the following expression.
ΔH°rxn = 1 mol × ΔH°f(NO₂(g)) - 1 mol × ΔH°f(NO(g)) - 1/2 mol × ΔH°f(O₂(g))
ΔH°f(NO(g)) = 1 mol × ΔH°f(NO₂(g)) - ΔH°rxn - 1/2 mol × ΔH°f(O₂(g)) / 1 mol
ΔH°f(NO(g)) = 1 mol × 33.90 kJ/mol - (-114.14 kJ) - 1/2 mol × 0 kJ/mol / 1 mol
ΔH°f(NO(g)) = 148.04 kJ/mol