The motion described here is a projectile motion which is characterized by an arc-shaped direction of motion. There are already derived equations for this type of motions as listed:
Hmax = v₀²sin²θ/2g
t = 2v₀sinθ/g
y = xtanθ + gx²/(2v₀²cos²θ)
where
Hmax = max. height reached by the object in a projectile motion
θ=angle of inclination
v₀= initial velocity
t = time of flight
x = horizontal range
y = vertical height
Part A.
Hmax = v₀²sin²θ/2g = (30²)(sin 33°)²/2(9.81)
Hmax = 13.61 m
Part B. In this part, we solve the velocity when it almost reaches the ground. Approximately, this is equal to y = 28.61 m and x = 31.91 m. In projectile motion, it is important to note that there are two component vectors of motion: the vertical and horizontal components. In the horizontal component, the motion is in constant speed or zero acceleration. On the other hand, the vertical component is acting under constant acceleration. So, we use the two equations of rectilinear motion:
y = v₀t + 1/2 at²
28.61 = 30(t) + 1/2 (9.81)(t²)
t = 0.839 seconds
a = (v₁-v₀)/t
9.81 = (v₁ - 30)/0.839
v₁ = 38.23 m/s
Part C.
y = xtanθ + gx²/(2v₀²cos²θ)
Hmax + 15 = xtanθ + gx²/(2v₀²cos²θ)
13.61 + 15 = xtan33° + (9.81)x²/[2(30)²(cos33°)²]
Solving using a scientific calculator,
x = 31.91 m
The answer is the same as many workers needed
ON EARTH, every kilogram of mass weighs about 2.205 pounds.
So if you know the weight (in pounds), and you know that it was
weighed on Earth, you can simply divide the pounds by 2.205 ,
and you'll get the mass (in kilograms).
I can see that on this science homework, they used 2.2 for the weight
of 1 kilogram expressed in pounds. So just divide the weight by 2.2
to get the mass in kilograms.
(The weight number they gave you is not so random. :-) )
Answer:
"Cannot be determined," if that's an answer choice. It depends on the velocities of both objects, since momentum=mass*velocity.
Explanation: