Answer:

Explanation:
The rotation rate of the man is:



The resultant rotation rate of the system is computed from the Principle of Angular Momentum Conservation:
![(90\,kg)\cdot (5\,m)^{2}\cdot (0.16\,\frac{rad}{s} ) = [(90\,kg)\cdot (5\,m)^{2}+20000\,kg\cdot m^{2}]\cdot \omega](https://tex.z-dn.net/?f=%2890%5C%2Ckg%29%5Ccdot%20%285%5C%2Cm%29%5E%7B2%7D%5Ccdot%20%280.16%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20%29%20%3D%20%5B%2890%5C%2Ckg%29%5Ccdot%20%285%5C%2Cm%29%5E%7B2%7D%2B20000%5C%2Ckg%5Ccdot%20m%5E%7B2%7D%5D%5Ccdot%20%5Comega)
The final angular speed is:

Answer:
the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Explanation:
Given the data in the question;
Kinetic energy of each proton that makes up the beam = 3.25 × 10⁻¹⁵ J
Mass of proton = 1.673 × 10⁻²⁷ kg
Charge of proton = 1.602 × 10⁻¹⁹ C
distance d = 2 m
we know that
Kinetic Energy = Charge of proton × Potential difference ΔV
so
Potential difference ΔV = Kinetic Energy / Charge of proton
we substitute
Potential difference ΔV = ( 3.25 × 10⁻¹⁵ ) / ( 1.602 × 10⁻¹⁹ )
Potential difference ΔV = 20287.14 V
Now, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m will be;
E = Potential difference ΔV / distance d
we substitute
E = 20287.14 V / 2 m
E = 10143.57 V/m or 1.01 × 10⁴ V/m
Therefore, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Answer:
E = 1440 kJ
Explanation:
It is given that,
Power of a cooker oven is 800 W
Voltage at which it is operated is 230 V
Time, t = 30 minutes = 1800 seconds
We need to find the electrical energy used by the cooker oven. The product of power and time is equal to the energy consumed. So,

So, electrical energy of 1440 kJ is consumed by the cooker oven.
Answer:
I believe it is a transfer of energy from the rubber band to the car
Explanation:
However it could be a transfer of potential energy from the stretched rubber band that is released into kinetic energy into the car. Depends as there is little context to the question.
Answer:
By elimination I know it's not CGL and I know it's not Charle's Law.
Gay-Lussac's law states the pressure of a a given mass of gas varies directly with the absolute temperature of the gas, when the volume is kept constant. I think it's Gay-Lussac's Law.
Boyle's law states that pressure of a gas tends to increase as the volume of the container decreases which I got from a google search because I didn't know what it was.
CGL is the combined formula of all of these laws by the way
Charle's law is just gas expands when heated.
Gay-Lussac's is the best answer choice in my opinion