1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
3 years ago
5

The pump of a water distribution system is powered by a 6-kW electric motor whose efficiency is 95 percent. The water flow rate

is 18 L/s. The diameters of the inlet and outlet pipes are the same, and the elevation difference across the pump is negligible. If the pressures at the inlet and outlet of the pump are measured to be 100 kPa and 300 kPa (absolute), respectively, determine (a) the mechanical efficiency of the pump and (b) the temperature rise of water as it flows through the pump due to the mechanical inefficiency. (Answer:
Engineering
1 answer:
Sonja [21]3 years ago
7 0

Answer:

a) Mechanical efficiency (\varepsilon)=63.15%  b) Temperature rise= 0.028ºC

Explanation:

For the item a) you have to define the mechanical power introduced (Wmec) to the system and the power transferred to the water (Pw).

The power input (electric motor) is equal to the motor power multiplied by the efficiency. Thus, Wmec=0.95*6kW=5.7 kW.

Then, the power transferred (Pw) to the fluid is equal to the flow rate (Q) multiplied by the pressure jump \Delta P. So P_W = Q*\Delta P=0.018m^3/s * 200x10^3 Pa=3600W.

The efficiency is defined as the ratio between the output energy and the input energy. Then, the mechanical efficiency is \varepsilon=3.6kW/5.7kW=0.6315=63.15\%

For the b) item you have to consider that the inefficiency goes to the fluid as heat. So it is necessary to use the equation of the heat capacity but in a "flux" way. Calling <em>H</em> to the heat transfered to the fluid, the specif heat of the water and \rho the density of the water:

[tex]H=(5.7-3.6) kW=\rho*Q*c*\Delta T=1000kg/m^3*0.018m^3/s*4186J/(kg \ºC)*\Delta T[/tex]

Finally, the temperature rise is:

\Delta T=2100/75348 \ºC=0.028 \ºC

You might be interested in
Gasoline has a comparatively high Btu per gallon rating of around
Shalnov [3]

Answer:

A

Explanation:

4 0
3 years ago
A bridge hand consists of 13 cards. One way to evaluate a hand is to calculate the total high point count (HPC) where an ace is
son4ous [18]

Answer: Let us use the pickled file - DeckOfCardsList.dat.

Explanation: So that our possible outcome becomes

7♥, A♦, Q♠, 4♣, 8♠, 8♥, K♠, 2♦, 10♦, 9♦, K♥, Q♦, Q♣

HPC (High Point Count) = 16  

4 0
3 years ago
A spring-mass-damper instrument is employed for acceleration measurements. The spring constant is 12000 N/m. The mass is 5 g. Th
shepuryov [24]

Answer:

a) 246.56 Hz

b) 203.313 Hz

c) Add more springs

Explanation:

Spring constant = 12000 N/m

mass = 5g = 5 * 10^-3 kg

damping ratio = 0.4

<u>a) Calculate Natural frequency </u>

Wn = √k/m = \sqrt{12000 /  5*10^{-3}  }

                   = 1549.19 rad/s  ≈ 246.56 Hz

<u>b) Bandwidth of instrument </u>

W / Wn = \sqrt{1-2(0.4)^2}

W / Wn = 0.8246

therefore Bandwidth ( W ) = Wn * 0.8246 = 246.56 * 0.8246 = 203.313 Hz

C ) To increase the bandwidth we have to add more springs

5 0
3 years ago
What did the US and USSR agree on in the INF Treaty? They agreed to reduce nuclear weapons. They agreed that new European nation
faust18 [17]

Answer:

they agreed to reduce nuclear weapons

4 0
3 years ago
Read 2 more answers
Two resistors, A and B, individually connect to a 9V battery. A student notices that resistor A is warmer than resistor B. Which
dybincka [34]

Answer:

Resistor B

Explanation:

Since resistance is the opposition to the flow of current in a circuit,

first let assume the two resistors are connected in parallel to the voltage, recall that when connection is in parallel, the different amount of current pass through the resistors depending on the value with the small resistor having  a lower resistance effect hence higher current will pass through

The energy dissipated in each resistor can be calculated as

E=\frac{1}{2}IR^{2}t.

from the formula we can conclude that the energy value will be higher for the resistor with small resistance value. hence more heating effect which will cause it to be warm.

Also when connected individually the current flow from the voltage source will pass through the resistor which when we calculate the energy dissipated, the resistor with smaller value will be higher because it will draw more current which will in turn lead to a heating effect and cause the resistor to be warm. Hence we can conclude that the resistance B has greatest resistance value.

4 0
3 years ago
Other questions:
  • When circuit switching is used, what is the maximum number of circuit-switched users that can be supported? Explain your answer
    6·1 answer
  • Please help <br> please i need to turn this in
    13·1 answer
  • A 20.0 µF capacitor is charged to a potential difference of 800 V. The terminals of the charged capacitor are then connected to
    12·1 answer
  • Determine the Thevenin/Norton Equivalent Circuit with respect to the terminalsa,bas shown in the figure. (Here 1A is an independ
    11·1 answer
  • The densities of several materials are given in SI units. Convert these to densities in U.S. customary units (slug/ft3), and als
    12·1 answer
  • A 25 lb sacrificial Mg anode is attached to the steel hull of a container ship. If the anode completely corrodes within 3 months
    10·1 answer
  • 1.8 A water flow of 4.5 slug/s at 60 F enters the condenser of steam turbine and leaves at 140 F. Determine the heat transfer ra
    13·1 answer
  • 8.28 Water is the working fluid in an ideal Rankine cycle with superheat and reheat. Steam enters the first-stage turbine at 140
    13·1 answer
  • 2. A F-22 Raptor has just climbed through an altitude of 9,874 m at 1,567 kph when a disk
    8·1 answer
  • Select four items that an industrial engineer must obtain in order to practice in the field.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!