Answer:
Answer in explanation
Explanation:
The reactivity or passiveness of an element depends solely on how close it is to attain a noble gas configuration. This means the closer an element is to attain a noble gas configuration, the greater its reactivity in both direction, positively or negatively.
Alkali metals belong to group 1 of the periodic table while halogens belong to group 17 of the periodic table. This means they are just one electron away from achieving the stability of a noble gas configuration. While alkali metals need to lose one electron to form a univalent positive ion, halogens news to gain one electron to form a univalent negative ion.
They tend to go about this vigorously and as such undergo several chemical reactions because of that single electron they neeed.
Explanation:
The given data is as follows.
Solvent 1 = benzene, Solvent 2 = water
= 2.7,
= 100 mL
= 10 mL, weight of compound = 1 g
Extract = 3
Therefore, calculate the fraction remaining as follows.
![f_{n} = [1 + K_{p}(\frac{V_{S_{2}}}{V_{S_{1}}})]^{-n}](https://tex.z-dn.net/?f=f_%7Bn%7D%20%3D%20%5B1%20%2B%20K_%7Bp%7D%28%5Cfrac%7BV_%7BS_%7B2%7D%7D%7D%7BV_%7BS_%7B1%7D%7D%7D%29%5D%5E%7B-n%7D)
= ![[1 + 2.7(\frac{100}{10})]^{-3}](https://tex.z-dn.net/?f=%5B1%20%2B%202.7%28%5Cfrac%7B100%7D%7B10%7D%29%5D%5E%7B-3%7D)
= 
= 
Hence, weight of compound to be extracted = weight of compound - fraction remaining
= 1 - 
= 0.00001
or, = 
Thus, we can conclude that weight of compound that could be extracted is
.
Answer:
B
Explanation:
If the student needs one gram but so far only has 0.37 grams, then the amount they need is the difference between what they need and how much they already have. 1-0.37=0.63 grams.
...which isn't actually an option because none of them have decimal points but I would say it is B anyway because it is the equivalent ratio and maybe there was a typo.
Hope this helped!
Answer:
Inspiration
Explanation:
This question is on application of Boyle's law; <u>pressure is inversely proportional to volume</u>.when we inhale air, the diaphragm and the muscles in the ribs contract thus increasing the volume in the lungs.Increased volume of the lungs cause the pressure to decrease.During exhaling, the diaphragm and muscles in the ribs relax, making the lungs to recoil and reduce in volume to force air out.Pressure in the lungs is increased than that in the environment making air to move out.
Answer:
There was 450.068g of water in the pot.
Explanation:
Latent heat of vaporisation = 2260 kJ/kg = 2260 J/g = L
Specific Heat of Steam = 2.010 kJ/kg C = 2.010 J/g = s
Let m = x g be the weight of water in the pot.
Energy required to vaporise water = mL = 2260x
Energy required to raise the temperature of water from 100 C to 135 C = msΔT = 70.35x
Total energy required = 

Hence, there was 450.068g of water in the pot.