Hydrogen bonds are strong intermolecular forces created when a hydrogen atom bonded to an electronegative atom approaches a nearby electronegative atom. Greater electronegativity of the hydrogen bond acceptor will lead to an increase in hydrogen-bond strength.
I hope this helps
Molecular weight it stands for molecular weight
<span>A </span>chemical formula<span> is a way of expressing information about the proportions of </span>atoms<span> that constitute a particular</span>chemical compound<span>, using a single line of </span>chemical element<span> symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and </span>plus<span> (+) and </span>minus<span> (−) signs. A chemical formula is not a </span>chemical name showing how the atoms are arranged.
Answer: -
3.151 M
Explanation: -
Let the volume of the solution be 1000 mL.
At 25.0 °C, Density = 1.260 g/ mL
Mass of the solution = Density x volume
= 1.260 g / mL x 1000 mL
= 1260 g
At 25.0 °C, the molarity = 3.179 M
Number of moles present per 1000 mL = 3.179 mol
Strength of the solution in g / mol
= 1260 g / 3.179 mol = 396.35 g / mol (at 25.0 °C)
Now at 50.0 °C
The density is 1.249 g/ mL
Mass of the solution = density x volume = 1.249 g / mL x 1000 mL
= 1249 g.
Number of moles present in 1249 g = Mass of the solution / Strength in g /mol
= 
= 3.151 moles.
So 3.151 moles is present in 1000 mL at 50.0 °C
Molarity at 50.0 °C = 3.151 M
Answer:
<em><u>Rows in the periodic table are called periods</u></em>. As one moves from left to right in a given period, the chemical properties of the elements slowly change. <em><u>Columns in the periodic table are called groups</u></em>. Elements in a given group in the periodic table share many similar chemical and physical properties
Explanation: