Answer:
The wavelength the student should use is 700 nm.
Explanation:
Attached below you can find the diagram I found for this question elsewhere.
Because the idea is to minimize the interference of the Co⁺²(aq) species, we should <u>choose a wavelength in which its absorbance is minimum</u>.
At 400 nm Co⁺²(aq) shows no absorbance, however neither does Cu⁺²(aq). While at 700 nm Co⁺²(aq) shows no absorbance and Cu⁺²(aq) does.
Answer:
[CO2] > [N2] > [He]
Explanation:
The relative concentration of CO2, N2 and He depends on the solubility of each gas in water. The more soluble in water a gas is, the greater its concentration in aqueous solution.
Among the gases listed, CO2 is most soluble in water hence it is expected to have the greatest concentration in solution followed by N2. Helium gas is insoluble in water hence it has the least concentration in the aqueous solution.
True because if anything is moving it is in motion. And because horizontal is similar to projectile!
Answer:
B
Explanation:
Mars atmosphere contains mainly carbon iv oxide, but the greenhouse effect as subdued as there is so little CO2 overall.
Venus as a planet contains 96.5% of carbon iv oxide. it doesn't contain water which can trap the CO2 as we have on earth where the oceans are able to trap the CO2 present and subdue the greenhouse effect. This inability to trap CO2 in Venus prevents infrared rays from escaping and with the fact the Venus is closer to the sun than earth and mars, its surface it extremely hot.
Colligative
properties calculations are used for this type of problem. Calculations are as
follows:<span>
</span>
<span>ΔT(freezing point)
= (Kf)m
ΔT(freezing point)
= 1.86 °C kg / mol (0.705)
ΔT(freezing point) = 1.3113 °C
</span>
<span>
</span>
<span>Hope this answers the question. Have a nice day.</span>