Answer:
5.62 * 10^-13 moles per liter
Explanation:
The pH of a solution is the negative logarithm to base 10 of the concentration of hydrogen ions. What we simply do here is to input the information in the question into the equation:
pH=−log10[H⁺]
Here we know the pH but we do not know the concentration of the hydrogen ions.
12.25 = -log [H+]
log[H+] = -12.25
[H+] = 10^-12.25
[H+] = 5.62 * 10^-13 moles per liter
The relationship between pH and pKa of buffer solution in given atomic view:
In figure I pH= pKa ( since [HA] =[A-] )
In figure II pH > pKa ( since [A-] > [HA] )
In figure III pH < pKa ( since [A-] < [HA] )
The pH and pKa are related by the Henderson-Hasselbalch equation. It should not be used for concentrated solutions, extremely low pH acids, or extremely high pH bases because it is simply an approximation.
pH = pKa + log(conjugate base/weak acid).
pH equals pKa plus log ([A-] / [HA]).
pH is determined by dividing the weak acid concentration by the log of the conjugate base concentration and the pKa value.
About halfway to the equivalence point:
pH = pKa
It's important to note that this equation is familiar with the connection because it is sometimes written for the Ka value rather than the pKa value.
pKa = – log Ka
Hence, value of pH depend on relative concentration of [A-] and HA]
To know more about Ka.
brainly.com/question/16035742
#SPJ4
Answer:
have you tasted acid?
Explanation:
also the taste of salt is sour.
Easy stoichiometry conversion :)
So, for stoichiometry, we always start with our "given". In this case, it would be the 10.0 grams of NaHCO3. This unit always goes over 1.
So, our first step would look like this:
10.0
------
1
Next, we need to cancel out grams to get to moles. To do this, we will do grams of citric acid on the BOTTOM of the next step, so it cancels out. This unit in grams will be the mass of NaHCO3, which is 84.007. Then, we will do our unit of moles on top. Since this is unknown, it will be 1.
So, our 2nd step would look like this:
1 mole CO2
-----------------
84.007g NaHCO3
When we put it together: our complete stoichiometry problem would look like this:
10.0g NaHCO3 1mol CO2
---------------------- x -------------------------
1 84.007g NaHCO3
Now to find our answer, all we need to do is:
Multiply the two top numbers together (which is 10.0)
Multiply the two bottom numbers together (Which is 84.007)
And then....
Divide the top answer by the bottom answer.
10.0/84.007 is 0.119
So, from 10.0 grams of citric acid, we have 0.119 moles of CO2.
Hope I could help!
Answer: True
It is true that entropy is greater at higher trophic levels compared to the lower levels. The amount of energy and entropy in a certain food chain varies between trophic level. It specifically increases from one trophic level to another.