Answer:
0.54 mole
Explanation:
CH3COOH CH3CH2OH CH3COOCH2CH3 H2O
Initial concentration 1.0 mole 1.0 mole 0 mole 1.0mol
Change - x - x + x + x
Equilibrium (1.0 - x) (1.0 - x) x (1.0 + x)
K = [CH3COOCH2CH3]*[H2O]/[CH3COOH]*[CH3CH2OH]
x*(1.0+x)/(1.0-x)(1.0-x) = 4.0
x+x²=4*(1-x)²
x+x² = 4(1² - 2x + x²)
x + x² = 4 - 8x + 4x²
4 - 8x + 4x²- x² - x= 0
3x² - 9x + 4 = 0
x=2.5 , x=0.54
2.5 mole of acid cannot be esterified, because there is only 1.0 mole of acid,
so answer is 0.54 mole.
Surface runoff
Explanation:
The water that flows back to the streams and oceans are called surface runoff.
Surface runoff is a component of the water cycle usually composed of water in the liquid form that flows back into oceans that are nearby.
- The hydrologic cycle shows the cyclic process by which water passes in nature.
- Water passes through different forms, solid, liquid and gases.
- Surface runoff is water usually after rainfall that flows rapidly.
- They move to the final basin of deposition usually joining up with other water sources.
- This can be nearby streams, lakes or oceans.
learn more:
Downcutting a stream brainly.com/question/9259211
#learnwithBrainly
Answer: 3 degenerate orbitals are obtained
Explanation:
The p orbital can house a maximum of 6 electrons splitting the degenerate orbital into 3 and having each contain a maximum of 2 electrons each
Answer: The answer is 6.78 grams.
Explanation: The equation used for solving this type of problems is:

where,
is the initial amount of radioactive substance, N is the remaining amount and n is the number of half lives.
Number of half lives is calculated on dividing the given time by the half life.
n = time/half life
Time is given as 48.0 hours and the half life is given as 4.536 days. let's make the units same and for this let's convert the half life from days to hours.

= 108.864 hours
So,
= 0.441
Since 5.00 g is the required amount when the radioactive substance is delivered to the scientist, it would be the final amount that is N. We need to calculate the initial amount. Let's plug in the values in the equation:



= 6.78 g
So, 6.78 g of the radioactive substance needs to be ordered.