Answer:
No, only the wiehgt, because the gravitational pull on the two, are diffrent. 3kg on the moon may be 6kg here on earth. but in the end, the rock still holds however much rock it held in the begining.
Explanation:
I would say the answer is D
Paint samples received by forensic laboratories are usually in the form of small chips or smears. Infrared (IR) spectroscopy is one of the most commonly used tools available for the analysis of these types of samples and serves as a staple comparative technique in the assessment of whether or not a questioned sample could have come from a suspected object
The most direct way to probe the vibrational frequencies of a molecule is through infrared spectroscopy. This is because vibrational transitions typically require an amount of energy that corresponds to the infrared region of the spectrum. Raman spectroscopy, which typically uses visible light, can also be used to directly measure vibration frequencies.
Explanation:
In HCL, one positive atom is given to chlorine from hydrogen so that it can complete it's octate. chlorine take one electron from hydrogen.
In NaCl, Sodium takes one electron from chlorine to complete its orbit with eight electrons. Chlorine gives one electron to sodium.
Answer:
28.9%
Explanation:
Let's consider the following balanced equation.
2 FeS₂ + 11/2 O₂ ⇒ Fe₂O₃ + 4 SO₂
We can establish the following relations:
- The molar mass of Fe₂O₃ is 159.6 g/mol
- 1 mole of Fe₂O₃ is produced per 2 moles of FeS₂
- 1 mole of Fe is in 1 mole of FeS₂
- The molar mass of Fe is 55.84 g/mol
The amount of Fe in the sample that produced 0.516 g of Fe₂O₃ is:

The percent of Fe in 1.25 g of the ore is:

Answer:
see explanation below
Explanation:
First to all, this is a redox reaction, and the reaction taking place is the following:
2KMnO4 + 3H2SO4 + 5H2O2 -----> 2MnSO4 + K2SO4 + 8H2O + 5O2
According to this reaction, we can see that the mole ratio between the peroxide and the permangante is 5:2. Therefore, if the titration required 21.3 mL to reach the equivalence point, then, the moles would be:
MhVh = MpVp
h would be the hydrogen peroxide, and p the permanganate.
But like it was stated before, the mole ratio is 5:2 so:
5MhVh = 2MpVp
Replacing moles:
5nh = 2MpVp
Now, we just have to replace the given data:
nh = 2MpVp/5
nh = 2 * 1.68 * 0.0213 / 5
nh = 0.0143 moles
Now to get the mass, we just need the molecular mass of the peroxide:
MM = 2*1 + 2*16 = 34 g/mol
Finally the mass:
m = 0.0143 * 34
m = 0.4862 g