Answer:
A. London dispersion
Explanation:
London dispersion force is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
Answer:
Frequency = 1.25 ×10¹³ Hz
Explanation:
Given data:
Wavelength of light = 24.0 μm (2.4 ×10⁻⁵ m)
Frequency = ?
Solution:
Formula:
Speed of light = wavelength × frequency
Speed of light /wavelength = frequency
Frequency = 3×10⁸ m /s /2.4 ×10⁻⁵m
Frequency = 1.25 ×10¹³ s⁻¹
s⁻¹ = Hz
Frequency = 1.25 ×10¹³ Hz
Answer:
869 g Cl₂O
Explanation:
To find the theoretical yield of Cl₂O, you need to (1) convert moles SO₂ to moles Cl₂O (via mole-to-mole ratio from reaction coefficients) and then (2) convert moles Cl₂O to grams Cl₂O (via molar mass). It is important to arrange the conversions/ratios in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 3 sig figs to reflect the sig figs of the given amount (10.0 moles).
1 SO₂ (g) + 2 Cl₂ (g) ----> 1 SOCl₂ (g) + 1 Cl₂O (g)
Molar Mass (Cl₂O): 2(35.453 g/mol) + 15.998 g/mol
Molar Mass (Cl₂O): 86.904 g/mol
10.0 moles SO₂ 1 mole Cl₂O 86.904 g
------------------------ x ---------------------- x ------------------ = 869 g Cl₂O
1 mole SO₂ 1 mole
Answer:
0.24M
Explanation:
The equation for the reaction is given below:
H2SO4 + 2KOH → K2SO4 + 2H2O
From the equation above, we obtained the following information:
nA (mole of acid) = 1
nB (mole of base) = 2
Data obtained from the question include:
Va (volume of the acid) = 12mL
Ca (concentration of the acid) =?
Vb (volume of the base) = 36mL
Cb (concentration of the base) = 0.16 M
The Ca (concentration of the acid) can be obtained as follow:
CaVa/CbVb = nA/nB
Ca x 12 / 0.16 x 36 = 1 /2
Cross multiply to express in linear form as shown below:
Ca x 12 x 2 = 0.16 x 36
Divide both side by 12 x 2
Ca = 0.16 x 36/ 12 x 2
Ca = 0.24M
Therefore, the concentration of the acid is 0.24M
Answer:
<h3>In a solid, molecules are packed together, and it keeps its shape. ... Matter is the "stuff" of the universe, the atoms, molecules and ions that make up all physical substances. In a solid, these particles are packed closely together and are not free to move about within the substance.</h3>