1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fredd [130]
3 years ago
9

In each of two coils the rate of change of the magnetic flux in a single loop is the same. The emf induced in coil 1, which has

159 loops, is 2.78 V. The emf induced in coil 2 is 4.11 V. How many loops does coil 2 have
Physics
2 answers:
wel3 years ago
7 0

Answer:

250 loops

Explanation:

We know that induced emf, E = -NdФ/dt wnere N = number of turns and dФ/dt = rate of change of magnetic flux.

Let E₁, E₂ and N₁, N₂ be the emfs and number of turns of coils 1 and 2 respectively. Since dФ/dt is the same for both coils,

E₁ = -N₁dФ/dt  (1) and E₂ = -N₂dФ/dt (2)

Dividing (1) by (2), we have

E₁/E₂ = -N₁dФ/dt/-N₂dФ/dt = N₁/N₂

E₁/E₂ = N₁/N₂

N₂ = (E₂/E₁)N₁

Given that E = 2.78 V, N₁ = 159 loops and E₂ = 4.11 V,  

N₂ = (E₂/E₁)N₁ = (4.11/2.78)159 = 250 loops

irinina [24]3 years ago
4 0

Answer:

 Coil 2 have  235  loops

Explanation:

Given  

The number of loops in coil 1 is n ₁= 159

The emf induced in coil 1 is  ε ₁ = 2.78 V

The emf induced in coil 2 is  ε ₂ = 4.11 V

Let

n ₂  is the number of loops in coil 2.

Given, the emf in a single loop in two coils are same. That is,

ϕ ₁/n ₁= ϕ ₂ n ₂⟹ 2.78/159 = 4.11/ n ₂

n₂=\frac{159 * 4.11}{2.78}

n₂=235

Therefore, the coil 2 has  n ₂= 235  loops.

You might be interested in
A 26-kg sled is on a snow-covered slope. The coefficients of friction between the sled’s runners and the snow are µs = 0.096 and µ
sweet-ann [11.9K]

Answer:

Explanation:

Given

mass of sled =26 kg

coefficient of static friction \mu _s=0.096

coefficient of kinetic friction \mu _k=0.072

In order to move sled from rest we need to provide a force greater than static friction which is given by

f_s=\mu mg=0.096\times 26\times 9.8=24.46 N

After Moving Sled kinetic friction comes in to play which is less than static friction

f_k=\mu _kmg=0.072\times 26\times 9.8=18.34 N

therefore minimum force to keep moving sledge at constant velocity is 18.34 N

3 0
3 years ago
Can the resistors in an "unbalanced" Wheatstone bridge circuit be treated as a combination of series and/or parallel resistors?
OlgaM077 [116]

Answer:

Explanation:

The resistors in a unbalanced wheat stone bridge cannot be treated as a combination of series and parallel combination of resistors.

In case of balanced wheat stone bridge, the resistors can be treated as the combination of series and parallel combination.

Here, In the balanced wheat stone bridge

R1 and R2 be in series and Ra and Rx is series and then their combination is in parallel combination.

4 0
3 years ago
A ball is hit so that it accelerates at 10 m/s2. The ball hits a glove with a force of 5 N. What is the mass of the ball?
jenyasd209 [6]

Answer:

0.5 kg

Explanation:

» <u>Concepts</u>

Newton's second law, the Law of Acceleration, states that F = ma, where F = Force in Newtons, m = mass in kg, and a = acceleration in m/s^2.

» <u>Application</u>

We are asked to find the mass of the ball using the equation F = ma. We're also given the force and acceleration, so the equation looks like 5 = 10(m).

» <u>Solution</u>

Step 1: Divide both sides by 10.

  • 5/10=10m/10
  • m=0.5

Thus, the mass of the ball is 0.5 kg.

8 0
2 years ago
what is the acceleration of a 2,000- kilogram truck if a force of 4,200. N is used to make it start moving forward?
cupoosta [38]

Newton's 2nd law of motion:              Force = (mass) x (acceleration)

Divide each side by (mass) :              Acceleration = (force) / (mass)

       Acceleration of the truck = (4,200 N) / (2,000 kg) = 2.1 m/s²

5 0
3 years ago
The force P is applied to the 45-kg block when it is at rest. Determine the magnitude and direction of the friction force exerte
cluponka [151]

Answer:

Check attachment for free body diagram of the question.

I used the free body diagram and the angles given in the diagram missing in the question above, but I used the data given in the above question.

Explanation:

Let frictional force be Fr acting down the plane

Let analyze the structure before inserting values

Using Newton's second law along the y-axis

ΣFy = Fnet = m•ay

Since the body is not moving in the y-direction, then ay = 0

N+PSinβ — WCosθ = 0

N+PSin20—441.45Cos15 = 0

N+PSin20—426.41 = 0

N = 426.41 — PSin20 , equation 1

The maximum Frictional force to be overcome is given as

Fr(max) = μsN

Fr(max) = 0.25(426.41 — PSin20)

Fr(max)= 106.6 —0.25•PSin20

Fr(max) = 106.6 — 0.08551P, equation 2

This is the maximum force that must be overcome before the body starts to move

Using Newton's law of motion in the x direction

Note, we took the upward direction up the plane as the direction of motion since the force want to move the block upward

Fnetx = ΣFx

Fnetx = P•Cosβ —W•Sinθ — Fr

Fnetx = P•Cos20—441.45•Sin15—Fr

Fnetx = 0.9397P — 114.256 — Fr

Equation 3

When Fnetx is positive, then, the body is moving up the plane, if Fnetx is negative, then, the maximum frictional force has not yet being overcome and the object is still i.e. not moving

a. When P = 0

From equation 2

Fr(max) = 106.6 — 0.08551P

Fr(max) = 106.6 — 0.08551(0)

Fr(max)= 106.6 N

So, 106.6N is the maximum force to be overcome

So, here the only force acting on the body is the weight and it acting down the plane, trying to move the body downward.

Wx = WSinθ

Wx = 441.45× Sin15

Wx = 114.256 N.

Since the force trying to move the body downward is greater than the maximum static frictional force, then the body is not in equilibrium, it is moving downward.

So, finding the magnitude of frictional force

From equation 1

N = 426.41 — PSin20 , equation 1

N = 426.41 N, since P=0

Then, using law of kinetic friction

Fr = μk • N

Fr = 0.22 × 426.41

Fr = 93.81 N.

b. Now, when P = 190N

From equation 2

Fr(max) = 106.6 — 0.08551(190)

Fr(max) = 106.6 —16.2469

Fr(max)= 90.353 N

So, 90.353 N is the maximum force to be overcome

Now the force acting on the x axis is the horizontal component of P and the horizontal component of the weight

Fnetx = P•Cosβ —W•Sinθ

Fnetx = 190Cos20 — 441.45Sin15

Fnetx = 64.29N

So the force moving the body up the incline plane is 64.29N

Fnetx < Fr(max)

Then, the frictional force has not being overcome yet.

Then, the body is in equilibrium.

Then, applying equation 3.

Fnetx = 0.9397P — 114.256 — Fr

Fnetx = 0, since the body is not moving

0 = 0.9397(190) —114.246 — Fr

Fr = 64.297 N

Fr ≈ 64.3N

c. When, P = 268N

From equation 2

Fr(max) = 106.6 — 0.08551(268)

Fr(max) = 106.6 —16.2469

Fr(max)= 83.68 N

So, 83.68 N is the maximum force to be overcome

Now the force acting on the x axis is the horizontal component of P and the horizontal component of the weight

Fnetx = P•Cosβ —W•Sinθ

Fnetx = 268Cos20 — 441.45Sin15

Fnetx = 137.58 N

So the force moving the body up the incline plane is 137.58 N

Fnetx > Fr(max)

Then, the frictional force has being overcome.

Then, the body is not equilibrium.

So, finding the magnitude of frictional force

From equation 1

N = 426.41 — 268Sin20 , equation 1

N = 334.75 N, since P=268N

Then, using law of kinetic friction

Fr = μk • N

Fr = 0.22 × 334.75

Fr = 73.64 N

d. The required force to initiate motion is the force when the block want to overcome maximum frictional force.

So, Fnetx = Fr(max)

Px — Wx = Fr(max)

From equation 1

Fr(max) = 106.6 — 0.08551P,

P•Cosβ-W•Sinθ = 106.6 — 0.08551P

P•Cos20 — 441.45•Sin15 = 106.6 — 0.08551P

P•Cos20—114.256=106.6 - 0.08551P

PCos20+0.08551P =106.6 + 114.256

1.025P=220.856

P = 220.856/1.025

P = 215.43 N

3 0
3 years ago
Other questions:
  • A 0.80 kg mass attached to an ideal spring oscillates horizontally with a period of 0.50 s and amplitude of 0.30 m. What is the
    10·1 answer
  • Do sound waves always travel in straight lines explain
    6·1 answer
  • A person hits a tennis ball with a mass of 0.058 kg against a wall.
    5·1 answer
  • How do I disable internal laptop display on Linux? So that I can project to external monitor! video=LVDS-1:d and video=eDP-1:d w
    8·1 answer
  • What is one of the most noticeable effects of the moon on earth??
    8·1 answer
  • Which example is NOT the proper use of a casting of a toolmark?
    9·1 answer
  • On a part-time job, you are asked to bring a cylindrical iron rod of density 7800 kg/m3, length 88.8 cm and diameter 2.30 cm fro
    14·1 answer
  • Define motion also justify that rest and motion are related terms​
    11·1 answer
  • Determine the ratio of the flow rate through capillary tubes A and B (that is, Qa/Qb).
    8·1 answer
  • HELPP PLEEEAAAAASSSEEEEWKKKKKKK!!!!!
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!