(a) The net flux through the coil is zero.
In fact, the magnetic field generated by the wire forms concentric circles around the wire. The wire is placed along the diameter of the coil, so we can imagine as it divides the coil into two emisphere. Therefore, the magnetic field of the wire is perpendicular to the plane of the coil, but the direction of the field is opposite in the two emispheres. Since the two emispheres have same area, then the magnetic fluxes in the two emispheres are equal but opposite in sign, and so they cancel out when summing them together to find the net flux.
(b) If the wire passes through the center of the coil but it is perpendicular to the plane of the wire, the net flux through the coil is still zero.
In fact, the magnetic field generated by the wire forms concentric lines around the wire, so it is parallel to the plane of the coil. But the flux is equal to

where

is the angle between the direction of the magnetic field and the perpendicular to the plane of the coil, so in this case

and so the cosine is zero, therefore the net flux is zero.
Answer:
22.2 W
Explanation:
First of all, we calculate the work done by moving the wagon, using the formula:

where
F = 20 N is the magnitude of the force
d = 1000 m is the displacement of the wagon
is the angle between the direction of the force and of the displacement (assuming the force is applied in the direction of motion)
Substituting, we find

Now we can find the power generated, which is equal to the ratio between the work done and the time taken:

where
W = 20,000 J
t = 15 min = 900 s
Substituting,

And the same value in Joules/second (remember that 1 Watt = 1 Joule/second)
Their velocity afterwards is 2.88 m/s east
Explanation:
We can solve this problem by using the law of conservation of momentum. In fact, for an isolated system (= no external force), the total momentum must be conserved before and after the collision. So we can write:
where: in this case:
is the mass of the first player
is the initial velocity of the first player (choosing east as positive direction)
is the mass of the second player
is the initial velocity of the second player
is their combined velocity afterwards
Solving for v, we find:
And the sign is positive, so the direction is east.
Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer: When a pathogen enters their colony, ants change their behavior to avoid the outbreak of disease. In this way, they protect the queen, brood and young workers from becoming ill. These results, from a study carried out in collaboration between the groups of Sylvia Cremer at the Institute of Science and Technology Austria (IST Austria) and of Laurent Keller at the University of Lausanne, are published today in the journal Science.
Explanation: search for it.
Angular velocity of the rotating tires can be calculated using the formula,
v=ω×r
Here, v is the velocity of the tires = 32 m/s
r is the radius of the tires= 0.42 m
ω is the angular velocity
Substituting the values we get,
32=ω×0.42
ω= 32/0.42 = 76.19 rad/s
= 76.19×
revolution per min
=728 rpm
Angular velocity of the rotating tires is 76.19 rad/s or 728 rpm.