So in calculating this one its is really hard to explain how i get it on solve it but you must consider this factors that i give in getting the answer. First is the distance cover by the ball when it is hit by the club, Second is you must estimate both of those data when it is in the moon and in the earth whre the gravity of the earth is 9.8m/s^2 so by calculating the Gravity of the moon or gMoon is equal 1.74m/s^2
Answer:
0.82 m
Explanation:
The ball is in free fall - uniform accelerated motion with constant acceleration downward,
(acceleration of gravity). So we can use the following suvat equation to solve the problem:

where
v is the final velocity
u = 4 m/s is the initial velocity
a is the acceleration
s is the displacement
At the maximum displacement, v = 0 (the velocity becomes zero). Substituting and solving for s, we find:

Answer:
(a) 17634.24 Ω
(b) 0.0068 A
Explanation:
(a)
The formula for inductive inductance is given as
X' = 2πFL................... Equation 1
Where X' = inductive reactance, F = frequency, L = inductance
Given: F = 60 Hz, L = 46.8 H, π = 3.14
Substitute into equation 1
X' = 2(3.14)(60)(46.8)
X' = 17634.24 Ω
(b)
From Ohm's law,
Vrms = X'Irms
Where Vrms = Rms Voltage, Irms = rms Current.
make Irms the subject of the equation
Irms = Vrms/X'...................... Equation 2
Given: Vrms = 120 V, X' = 17634.24 Ω
Substitute into equation 2
Irms = 120/17634.24
Irms = 0.0068 A