Answer:
A = Molarity = 0.22 M
B = Molarity = 0.36 M
Explanation:
Given data:
For first solution:
number of moles = 0.550 mol
Volume of solution = 2.50 L
Molarity = ?
Molarity:
Formula:
Molarity = number of moles of solute / volume of solution in L.
Molarity = 0.550 mol / 2.50 L
Molarity = 0.22 M
For second solution:
Mass of NaCl = 15.7 g
Volume of solution = 709 mL or 709/1000 = 0.709 L
Molarity = ?
Solution:
Number of moles = mass / molar mass
Number of moles = 14.7 g/ 58.44 g/mol
Number of moles = 0.252 mol
Molarity:
Molarity = number of moles of solute / volume of solution in L.
Molarity = 0.252 mol / 0.709 L
Molarity = 0.36 M
<span>Important information to solve the exercise :
Substance ΔHf (kJ/mol):
HCl(g)= −92.0 </span><span>kJ/mol
Al(OH)3(s)= −1277.0 </span><span><span>kJ/mol
</span> H2O(l)= −285.8 </span><span>kJ/mol
AlCl3(s) =−705.6 </span><span>kJ/mol
</span><span>Al(OH)3(s)+3HCl(g)→AlCl3(s)+3H2O(l)
reactants products
products- reactants:</span><span>
(−705.6) + (3 x −285.8) - ( −1277.0 ) - (3 x −92.0 ) = - 10.0 </span>kJ per mole at 25°C
<span>
</span>
Physicist Ernest Rutherford<span> established the nuclear theory of the atom with his </span>gold-foil experiment<span>. When he shot a beam of alpha particles at a sheet of </span>gold foil<span>, a few of the particles were deflected. He concluded that a tiny, dense nucleus was causing the deflections.</span>
For [Ni(en)³]²⁺ which is purple, the crystal field splitting energy is greater than the complex ion, [Ni(H₂O)₆]²⁺ which is green in color.
When a Lewis base id attached to the metal ion by covalent bond, then the complex ion is formed and when these complex ions are present with other ions of opposite charge or neutral charge, they will make complex compounds.