Answer:
Please see below as the answer is self-explanatory.
Explanation:
- We can take the initial velocity vector, which magnitude is a given (67 m/s) and project it along two directions perpendicular each other, which we choose horizontal (coincident with x-axis, positive to the right), and vertical (coincident with y-axis, positive upward).
- Both movements are independent each other, due to they are perpendicular.
- In the horizontal direction, assuming no other forces acting, once launched, the supply must keep the speed constant.
- Applying the definition of cosine of an angle, we can find the horizontal component of the initial velocity vector, as follows:

- Applying the definition of average velocity, since we know the horizontal distance to the target, we can find the time needed to travel this distance, as follows:

- In the vertical direction, once launched, the only influence on the supply is due to gravity, that accelerates it with a downward acceleration that we call g, which magnitude is 9.8 m/s2.
- Since g is constant (close to the Earth's surface), we can use the following kinematic equation in order to find the vertical displacement at the same time t that we found above, as follows:

- In this case, v₀y, is just the vertical component of the initial velocity, that we can find applying the definition of the sine of an angle, as follows:

- Replacing in (3) the values of t, g, and v₀y, we can find the vertical displacement at the time t, as follows:

- Since when the payload have traveled itself 400 m, it will be at a height of 53.5 m (higher than the target) we can conclude that the payload will be delivered safely to the drop site.
Proxigean Spring <span>Tide</span>
<h3>
Answer:</h3>
189.07 kPa
<h3>
Explanation:</h3>
Concept tested: Boyle's law
<u>We are given;</u>
- Initial volume of the syringe, V1 is 16 cm³
- Initial pressure of the syringe, P1 is 1.03 atm
- New volume of the syringe, V2 is 8.83 cm³
We are required to calculate the new pressure of the syringe;
- We are going to use the concept on Boyle's law of gases.
- According to the Boyle's law, for a fixed mass of a gas, the pressure is inversely proportional to its volume at constant temperature.
- At varying pressure and volume, k(constant) = PV and P1V1=P2V2
Therefore, to get the new pressure, P2, we rearrange the formula;
P2 = P1V1 ÷ V2
= ( 16 cm³ × 1.03 atm) ÷ 8.83 cm³
= 1.866 atm.
- Thus, the new pressure is 1.866 atm
- But, we need to convert pressure to Kpa
- Conversion factor is 101.325 kPa/atm
Thus;
Pressure = 1.866 atm × 101.325 kPa/atm
= 189.07 kPa
Hence, the new pressure of the air in the syringe is 189.07 kPa
Answer:
1654 kg m/s
Explanation:
The impulse experienced by an object is equal to the product between the force exerted on the object and the time during which the force lasts:

where:
I is the impulse
F is the force exerted on the object
is the time during which the force is applied
For the object in this problem, we have
(force applied)
(time interval)
Therefore, the impulse experienced by the object is:

When glass is rubbed with a dry cloth, the friction creates charged static electricity; this in turn attracts small non charged particles of dust. The simplest way to put it, the dry cloth creates a static charge that attracts non charged dust particles.