<span>We know that pressure is the force applied into a surface, in our case the wall of the room, so then first we will calculate the surface of this wall:
S = 2.2 * 3.2 = 7.04 m2
Then we also know the atmospheric pressure in normal conditions is 1 atm. That is the same 1 atm = 101325 Pascals or 101325 N/m2
Now we need to use the formula : P = F/S where P is pressure, F is force and S is surface to calculate the force:
F = P * S = 101325 * 7.04 = 713,328 Newtons
Conclusion: the force acts on the wall due the air inside the room is 713,328 N</span>
Answer:
- Waves with higher amplitude transfer HIGHER energy.
- Waves with higher frequency transfer HIGHER energy.
Answer:
Fc=5253
N
Explanation:
Answer:
Fc=5253
N
Explanation:
sequel to the question given, this question would have taken precedence:
"The 86.0 kg pilot does not want the centripetal acceleration to exceed 6.23 times free-fall acceleration. a) Find the minimum radius of the plane’s path. Answer in units of m."
so we derive centripetal acceleration first
ac (centripetal acceleration) = v^2/r
make r the subject of the equation
r= v^2/ac
ac is 6.23*g which is 9.81
v is 101m/s
substituing the parameters into the equation, to get the radius
(101^2)/(6.23*9.81) = 167m
Now for part
( b) there are two forces namely, the centripetal and the weight of the pilot, but the seat is exerting the same force back due to newtons third law.
he net force that maintains circular motion exerted on the pilot by the seat belts, the friction against the seat, and so forth is the centripetal force.
Fc (Centripetal Force) = m*v^2/r
So (86kg* 101^2)/(167) =
Fc=5253
N
Answer:
B. people with OCD know their disorder is irrational
Explanation:
Got it right