1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veronika [31]
3 years ago
8

A car is traveling north at 17.7 m/s . After 6 it’s velocity is 141 in the same direction. Find the magnitude and direction of t

he cars average acceleration
Physics
1 answer:
Furkat [3]3 years ago
3 0

By equation of motion we have   v = u + at

Where u = Initial velocity, v = final velocity, t = time taken and a = acceleration

Here v = 141 m/s, u = 17.7 m/s and t = 6 s

On substitution we will get

        141 = 17.7+ 6a

       So, a = (141-17.7)/6 = 20. 55 m/s^{2}

       Aceeleration = 20. 55 m/s^{2} along north direction.


You might be interested in
Write the ground-state electron configurations of the following ions. (a) Li+ (b) N3− (c) In3+ (Use the noble gas core electron
maria [59]

Li+  [He]

N³-  [Ne]

In³+  [Kr] 4d10

Tl+  [Xe] 4f14 5d10 6S2

6 0
3 years ago
Read 2 more answers
A police car chases a speeder along a straight road towards a cliff both vehicles move at 160km/h the siren on the police car pr
natta225 [31]

Answer:

f ’= 97.0 Hz

Explanation:

This is an exercise of the doppler effect use the frequency change due to the relative movement of the fort and the observer

in this case the source is the police cases that go to vs = 160 km / h

and the observer is vo = 120 km / h

the relationship of the doppler effect is

          f ’= f₀ (v + v₀ / v- v_{s})

let's reduce the magnitude to the SI system

            v_{s} = 160 km / h (1000 m / 1km) (1h / 3600s) = 44.44 m / s

            v₀ = 120 km / h (1000m / 1km) (1h / 3600s) = 33.33 m / s

we substitute in the equation of the Doppler effect

          f ‘= 100 (330+ 33.33 / 330-44.44)

          f ’= 97.0 Hz

4 0
3 years ago
A 80 W light bulb (normally run at 120 V) is attached to a transformer. The voltage source in the transformer is 65 V and Np = 3
Marina CMI [18]

67.8 turns needed by the secondary coil to run the bulb.

<u>Explanation</u>:

We know that,  

\text { Electric power }(p)=\frac{V^{2}}{R}

\text { Hence, } \frac{P_{1}}{P_{2}}=\frac{V_{1}^{2} / R}{V_{2}^{2} / R}

\frac{P_{1}}{P_{2}}=\frac{V_{1}^{2}}{V_{2}^{2}}

For calculating number of turns

\frac{N_{P}}{N_{S}}=\frac{V_{P}}{V_{S}}

Given that,

80 \mathrm{W}\left(P_{1}\right) \text { bulb with voltage } 120 \mathrm{V}\left(V_{1}\right) \text { is connected to a transformer. }

\text { The source voltage of a transformer is }\left(V_{P}\right) \text { is } 65 \mathrm{V}

\text { The number of turns in primary winding of transformer is }\left(N_{P}\right) \text { is } 30 .

We need to find the number of turns in the secondary winding \left(N_{S}\right) to run the bulb at 120W \left(P_{2}\right)

Firstly find the secondary voltage in the transformer use, \frac{P_{1}}{P_{2}}=\frac{V_{1}^{2}}{V_{2}^{2}}

\frac{80}{120}=\frac{120^{2}}{V_{2}^{2}}

V_{2}^{2}=\frac{120^{2} \times 120}{80}

V_{2}^{2}=\frac{1728000}{80}

V_{2}^{2}=21600

V_{2}=\sqrt{21600}

V_{2}=146.9 \mathrm{V}=V_{S}

Now, finding the number of turns in secondary coil. Use, \frac{N_{P}}{N_{S}}=\frac{V_{P}}{V_{S}}

\frac{30}{N_{S}}=\frac{65}{146.9}

N_{S}=\frac{30 \times 146.9}{65}

N_{S}=\frac{4407}{65}N_{S}=67.8

The number of turns in the secondary winding are 67.8 turns.

6 0
3 years ago
Which of the following improves your range of motion and helps prevent
erma4kov [3.2K]
A. A healthy body composition will improve range of motion and prevent injuries. Staying in a healthy weight range (BMI) prevents overexerting joints. It also helps increase range of motion which in turn reduces injury.
3 0
3 years ago
While driving fast around a sharp right turn, you find yourself pressing against the car door. What is happening?
sergiy2304 [10]

Answer:

option C

Explanation:

The correct answer is option C

When the driver takes the sharp right turn the door will exert rightward pressure on the driver.

When the driver takes the sudden right turn the tendency of the body is to be in the straight line by the vehicle moves in the circular path so, as the vehicle turns it applies a rightward force on you.

The pushing of the door to you because of the centripetal force acting on the car due to sudden sharp turn.

3 0
3 years ago
Other questions:
  • If a net force accelerates a 4.5-kg tool at 40 m/s2, what acceleration would that same net force give to an 18-kg tool?
    9·1 answer
  • An obiect of mass weighing 5,24 k acceleration due to gravity is 9 8 meters/second2 is raised to a height of 1.63 meters. What i
    13·1 answer
  • You can obtain a rough estimate of the size of a molecule by the following simple experiment. Let a droplet of oil spread out on
    10·1 answer
  • A wheel, starting from rest, rotates with a constant angular acceleration of 2.80 rad/s2. During a certain 5.00 s interval, it t
    14·2 answers
  • If the distance between two masses is tripled, the gravitational force between changes by a factor of:_______
    12·1 answer
  • A car drives over a hilltop that has a radius of curvature 0.120 km at the top of the hill. At what speed would the car be trave
    8·1 answer
  • Dumbo the elephant weights 13,000 pounds. What force would the Earths surface apply to Dumbo? 2.2 pounds = 1 kg
    6·1 answer
  • Care este densitatea materialului din care se confectioneaza un cub de 5cm daca masa lui este de 0,975kg/m3?
    12·2 answers
  • Like charges will exert a force of
    5·2 answers
  • An 85 kg man stands in a very strong wind moving at 15 m/s at torso height. As you know, he will need to lean in to the wind, an
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!