Answer:
f ’= 97.0 Hz
Explanation:
This is an exercise of the doppler effect use the frequency change due to the relative movement of the fort and the observer
in this case the source is the police cases that go to vs = 160 km / h
and the observer is vo = 120 km / h
the relationship of the doppler effect is
f ’= f₀ (v + v₀ / v-
)
let's reduce the magnitude to the SI system
v_{s} = 160 km / h (1000 m / 1km) (1h / 3600s) = 44.44 m / s
v₀ = 120 km / h (1000m / 1km) (1h / 3600s) = 33.33 m / s
we substitute in the equation of the Doppler effect
f ‘= 100 (330+ 33.33 / 330-44.44)
f ’= 97.0 Hz
67.8 turns needed by the secondary coil to run the bulb.
<u>Explanation</u>:
We know that,



For calculating number of turns

Given that,



We need to find the number of turns in the secondary winding
to run the bulb at 120W 
Firstly find the secondary voltage in the transformer use, 






Now, finding the number of turns in secondary coil. Use, 




The number of turns in the secondary winding are 67.8 turns.
A. A healthy body composition will improve range of motion and prevent injuries. Staying in a healthy weight range (BMI) prevents overexerting joints. It also helps increase range of motion which in turn reduces injury.
Answer:
option C
Explanation:
The correct answer is option C
When the driver takes the sharp right turn the door will exert rightward pressure on the driver.
When the driver takes the sudden right turn the tendency of the body is to be in the straight line by the vehicle moves in the circular path so, as the vehicle turns it applies a rightward force on you.
The pushing of the door to you because of the centripetal force acting on the car due to sudden sharp turn.