Answer:(a)9.685 mm
(b)4.184 mm
Explanation:
Given
Wavelength of light 
Width of slit(b)=0.210
(a)Width of central maximum located 1.80m from slit


=9.685 mm
(b)Width of the first order bright fringe



Answer:
The tension is 
Explanation:
The free body diagram of the question is shown on the first uploaded image From the question we are told that
The distance between the two poles is 
The mass tied between the two cloth line is 
The distance it sags is 
The objective of this solution is to obtain the magnitude of the tension on the ends of the clothesline
Now the sum of the forces on the y-axis is zero assuming that the whole system is at equilibrium
And this can be mathematically represented as

To obtain
we apply SOHCAHTOH Rule
So 
![\theta = tan^{-1} [\frac{opp}{adj} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7Bopp%7D%7Badj%7D%20%5D)
![= tan^{-1} [\frac{1}{7}]](https://tex.z-dn.net/?f=%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7B7%7D%5D)






Answer:
In physics, work is the amount of energy required to perform a given task (such as moving an object from one point to another). We start by defining the scalar product of two vectors, which is an integral part of the definition of work, and then turn to defining and using the concept of work to solve problems.
-- We know that the y-component of acceleration is the derivative of the
y-component of velocity.
-- We know that the y-component of velocity is the derivative of the
y-component of position.
-- We're given the y-component of position as a function of time.
So, finding the velocity and acceleration is simply a matter of differentiating
the position function ... twice.
Now, the position function may look big and ugly in the picture. But with the
exception of 't' , everything else in the formula is constants, so we don't even
need any fancy processes of differentiation. The toughest part of this is going
to be trying to write it out, given the text-formatting capabilities of the wonderful
envelope-pushing website we're working on here.
From the picture . . . . . y (t) = (1/2) (a₀ - g) t² - (a₀ / 30t₀⁴ ) t⁶
First derivative . . . y' (t) = (a₀ - g) t - 6 (a₀ / 30t₀⁴ ) t⁵ = (a₀ - g) t - (a₀ / 5t₀⁴ ) t⁵
There's your velocity . . . /\ .
Second derivative . . . y'' (t) = (a₀ - g) - 5 (a₀ / 5t₀⁴ ) t⁴ = (a₀ - g) - (a₀ /t₀⁴ ) t⁴
and there's your acceleration . . . /\ .
That's the one you're supposed to graph.
a₀ is the acceleration due to the model rocket engine thrust
combined with the mass of the model rocket
'g' is the acceleration of gravity ... 9.8 m/s² or 32.2 ft/sec²
t₀ is how long the model rocket engine burns
Pick, or look up, some reasonable figures for a₀ and t₀
and you're in business.
The big name in model rocketry is Estes. Their website will give you
all the real numbers for thrust and burn-time of their engines, if you
want to follow it that far.