None of your options, not via complete the square nor quadratic the formula.
Solve for x over the real numbers:
x^2 + 8 x + 9 = 0
x = (-8 ± sqrt(8^2 - 4×9))/2 = (-8 ± sqrt(64 - 36))/2 = (-8 ± sqrt(28))/2:
x = (-8 + sqrt(28))/2 or x = (-8 - sqrt(28))/2
sqrt(28) = sqrt(4×7) = sqrt(2^2×7) = 2sqrt(7):
x = (2 sqrt(7) - 8)/2 or x = (-2 sqrt(7) - 8)/2
Factor 2 from -8 + 2 sqrt(7) giving 2 (sqrt(7) - 4):
x = 1/22 (sqrt(7) - 4) or x = (-2 sqrt(7) - 8)/2
(2 (sqrt(7) - 4))/2 = sqrt(7) - 4:
x = sqrt(7) - 4 or x = (-2 sqrt(7) - 8)/2
Factor 2 from -8 - 2 sqrt(7) giving 2 (-sqrt(7) - 4):
x = sqrt(7) - 4 or x = 1/22 (-sqrt(7) - 4)
(2 (-sqrt(7) - 4))/2 = -sqrt(7) - 4:
Answer: x = sqrt(7) - 4 or x = -sqrt(7) - 4_____________________________________________________
Solve for x:
x^2 + 8 x + 9 = 0
Subtract 9 from both sides:
x^2 + 8 x = -9
Add 16 to both sides:
x^2 + 8 x + 16 = 7
Write the left hand side as a square:
(x + 4)^2 = 7
Take the square root of both sides:
x + 4 = sqrt(7) or x + 4 = -sqrt(7)
Subtract 4 from both sides:
x = sqrt(7) - 4 or x + 4 = -sqrt(7)
Subtract 4 from both sides:
Answer: x = sqrt(7) - 4 or x = -4 - sqrt(7)
11 hours bc 5 times 11 equals 55
Let's subtract then: 3x2 - 2x + 3 - (6x2 - 4x + 3)
taking out of the bracket with a changed sign: (there is a minus in front of the bracket)
3x2 - 2x + 3 - 6x2 + 4x - 3
let's reshuffle them so that similar terms are together:
3x2 - 6x2 - 2x + 4x + 3 - 3
Adding up similar terms:
-3x2 + 2x - that's our option 2!
The answer is 14. Just cut them into 2. Which will be 2 rectangles.
Answer:
Step-by-step explanation:
Girls:Boys = 3 : 2
Total students = 25
Girls = (3/5) * 25 = 15
Boys = (2/5) * 25 = 10